基于 KERAS 深度学习开发快速感性认知

本贴最后更新于 2677 天前,其中的信息可能已经时移世异
  • 机器学习按大功能来区分包含两类

    • 监督学习,需要有经过标注的结果,说明入参对应的结果,用于解决分类、拟合等问题。
    • 无监督学习,无需经过标注的结果,用于分析数据间的聚合关联关系,
  • 在监督学习算法按实现的功能有两大类型

    • 分类算法(用于给定参数推定所属的坆举分类)
    • 回归算法(拟合曲线方程,并根据入参算出曲线入参的结果,回归能得出连续的结果)
  • 一些监督算法

    • 线性回归,可以有多个入参,但是入参对应的幂指数都是1

      • 非线性回归可以转化成线性回归处理
    • Logistic回归,其基于Sigmoid函数,该函数结果介于0-1之间,其结合线性/非线性回归,可用于判断一件事情发生的概率。其是神经网络的基础,神经网络由多个该年该层组成

    • 神经网络(深度学习属于神经网络,后面的算法若不感兴趣可以直接跳过,本节仅仅用于说明监督算法有很多分类,下面会详细一点的介绍神经网络)

    • kNN算法,根据代数最短距离挑出最近的k个已知学习样本,并以样本的平均值(或者分类结果)作为推断值

    • 朴素贝叶斯算法,有很多个对结果有影响的参数,并假设这些参数都是独立发生,没有相互关联的,然后统计这些参数在某个结论中出现的概率,根据这些概率推断特定入参对应最可能的结果是什么

    • 决策树算法,根据训练样本的入参及结果,结合各个参数信息增熵的信息构造一个高效的分类树

  • 神经网络

    • 所谓神经网络学习的过程可以想象成解方程的过程,例如 y=ax+b,如果我们知道了 y 和 x的2个值,那么我们就可以求得a跟b的值。求得a跟b的值就是整个训练的最终目的
    • 但是实际情况下训练过程会复杂很多,我们之前有将到,神经网络的基础是Logistic回归,一个Logistic回归函数可对应为一个神经元,其函数形式可为 y = sigmoid(a0 + a1*x1 + a2 * x2 + ......)。我们实际上是不知道x的实际有效个数,也不知道其对应的合适幂等次数,所以我们很难像解方程一样解出各个a的值,通常求a的值是利用现有的所有训练样例,求得针对所有样例能获得一个最小化误差的a的值。求a值通常会用梯度下降及其相关优化的算法。具体感兴趣可以自行学习。
    • 而神经网络由多个神经元堆叠而成,以下第一个图为单个神经元,第二个图为神经网络

imageimage

  • 深度学习

    • 所谓深度学习就是计算由很多个层次(见上图的Layer)的神经网络的各个a(权重)的值,并没有什么玄乎的东西,其是一个商业概念
    • 但从上图可以看出,深度神经网络的计算量非常的大,这也是为什么在之前深度学习没有火起来的原因,为了减轻计算量提高效率,神经网络有针对不同场景的优化分支,有以下几类
    • 卷积神经网络
      • 卷积神经网络,会局部的抽取计算小特征,并在高层的layer根据小特征计算大特征,最终得到推论结果。其多用于图像处理
    • 循环神经网络
      • 其用于不能一次获得所有输入的场景,其能记录之前输入数据的状态,并以此加以训练。例如语音转文字处理场景,其能根据新的语音输入,以及之前转出来的文字统一作为入参,推断出下一个要转换的语音对应的文字
  • 基于KERAS的深度学习开发

    • 实际上基于KERAS的开发特别简单,我们要做的仅仅是搭积木
    • 根据我们现有的场景,选择组合特定适合的神经网络,就是工作的最主要部分,当然,前提就是我们需要熟悉各种神经网络的有缺点
    • 因此深度学习开发,可以说作出基本成果是难度不的,难度大的是,如何选择出合适的神经网络,拼凑出合适的模型,使得在足量的训练样本的情况下,训练出准确率高,计算复杂度小模型。
  • 以下是一个训练从图片转HTML/CSS的全部开发代码,大家可以感受下其代码量

    from numpy import array from keras.preprocessing.text import Tokenizer, one_hot from keras.preprocessing.sequence import pad_sequences from keras.models import Model, Sequential, model_from_json from keras.utils import to_categorical from keras.layers.core import Dense, Dropout, Flatten from keras.optimizers import RMSprop from keras.layers.convolutional import Conv2D from keras.callbacks import ModelCheckpoint from keras.layers import Embedding, TimeDistributed, RepeatVector, LSTM, concatenate , Input, Reshape, Dense from keras.preprocessing.image import array_to_img, img_to_array, load_img import numpy as np Using TensorFlow backend. # In [2]: dir_name = '/data/train/' # Read a file and return a string def load_doc(filename): file = open(filename, 'r') text = file.read() file.close() return text def load_data(data_dir): text = [] images = [] # Load all the files and order them all_filenames = listdir(data_dir) all_filenames.sort() for filename in (all_filenames): if filename[-3:] == "npz": # Load the images already prepared in arrays image = np.load(data_dir+filename) images.append(image['features']) else: # Load the boostrap tokens and rap them in a start and end tag syntax = '<START> ' + load_doc(data_dir+filename) + ' <END>' # Seperate all the words with a single space syntax = ' '.join(syntax.split()) # Add a space after each comma syntax = syntax.replace(',', ' ,') text.append(syntax) images = np.array(images, dtype=float) return images, text train_features, texts = load_data(dir_name) # In [4]: # Initialize the function to create the vocabulary tokenizer = Tokenizer(filters='', split=" ", lower=False) # Create the vocabulary tokenizer.fit_on_texts([load_doc('bootstrap.vocab')]) # Add one spot for the empty word in the vocabulary vocab_size = len(tokenizer.word_index) + 1 # Map the input sentences into the vocabulary indexes train_sequences = tokenizer.texts_to_sequences(texts) # The longest set of boostrap tokens max_sequence = max(len(s) for s in train_sequences) # Specify how many tokens to have in each input sentence max_length = 48 def preprocess_data(sequences, features): X, y, image_data = list(), list(), list() for img_no, seq in enumerate(sequences): for i in range(1, len(seq)): # Add the sentence until the current count(i) and add the current count to the output in_seq, out_seq = seq[:i], seq[i] # Pad all the input token sentences to max_sequence in_seq = pad_sequences([in_seq], maxlen=max_sequence)[0] # Turn the output into one-hot encoding out_seq = to_categorical([out_seq], num_classes=vocab_size)[0] # Add the corresponding image to the boostrap token file image_data.append(features[img_no]) # Cap the input sentence to 48 tokens and add it X.append(in_seq[-48:]) y.append(out_seq) return np.array(X), np.array(y), np.array(image_data) X, y, image_data = preprocess_data(train_sequences, train_features) In [ ]: #Create the encoder image_model = Sequential() image_model.add(Conv2D(16, (3, 3), padding='valid', activation='relu', input_shape=(256, 256, 3,))) image_model.add(Conv2D(16, (3,3), activation='relu', padding='same', strides=2)) image_model.add(Conv2D(32, (3,3), activation='relu', padding='same')) image_model.add(Conv2D(32, (3,3), activation='relu', padding='same', strides=2)) image_model.add(Conv2D(64, (3,3), activation='relu', padding='same')) image_model.add(Conv2D(64, (3,3), activation='relu', padding='same', strides=2)) image_model.add(Conv2D(128, (3,3), activation='relu', padding='same')) image_model.add(Flatten()) image_model.add(Dense(1024, activation='relu')) image_model.add(Dropout(0.3)) image_model.add(Dense(1024, activation='relu')) image_model.add(Dropout(0.3)) image_model.add(RepeatVector(max_length)) visual_input = Input(shape=(256, 256, 3,)) encoded_image = image_model(visual_input) language_input = Input(shape=(max_length,)) language_model = Embedding(vocab_size, 50, input_length=max_length, mask_zero=True)(language_input) language_model = LSTM(128, return_sequences=True)(language_model) language_model = LSTM(128, return_sequences=True)(language_model) #Create the decoder decoder = concatenate([encoded_image, language_model]) decoder = LSTM(512, return_sequences=True)(decoder) decoder = LSTM(512, return_sequences=False)(decoder) decoder = Dense(vocab_size, activation='softmax')(decoder)

    # Compile the model
    model = Model(inputs=[visual_input, language_input], outputs=decoder)
    optimizer = RMSprop(lr=0.0001, clipvalue=1.0)
    model.compile(loss='categorical_crossentropy', optimizer=optimizer)
    In [ ]:
    #Save the model for every 2nd epoch
    filepath="org-weights-epoch-{epoch:04d}--val_loss-{val_loss:.4f}--loss-{loss :.4f}.hdf5"
    checkpoint = ModelCheckpoint(filepath, monitor='val_loss', verbose=1, save_weights_only=True, period=2)
    callbacks_list = [checkpoint]
    In [ ]:
    # Train the model
    model.fit([image_data, X], y, batch_size=64, shuffle=False, validation_split=0.1, callbacks=callbacks_list, verbose=1, epochs=50)

以上仅为大家提供一个深度学习开发的一个初步概念,本人也在学习中,有错误或者不完善请斧整~

  • Keras
    2 引用
  • 人工智能

    人工智能(Artificial Intelligence)是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门技术科学。

    115 引用 • 318 回帖 • 1 关注
  • 深度学习

    深度学习(Deep Learning)是机器学习的分支,是一种试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的算法。

    43 引用 • 44 回帖 • 1 关注

相关帖子

欢迎来到这里!

我们正在构建一个小众社区,大家在这里相互信任,以平等 • 自由 • 奔放的价值观进行分享交流。最终,希望大家能够找到与自己志同道合的伙伴,共同成长。

注册 关于
请输入回帖内容 ...

推荐标签 标签

  • 游戏

    沉迷游戏伤身,强撸灰飞烟灭。

    187 引用 • 831 回帖
  • OpenShift

    红帽提供的 PaaS 云,支持多种编程语言,为开发人员提供了更为灵活的框架、存储选择。

    14 引用 • 20 回帖 • 661 关注
  • 区块链

    区块链是分布式数据存储、点对点传输、共识机制、加密算法等计算机技术的新型应用模式。所谓共识机制是区块链系统中实现不同节点之间建立信任、获取权益的数学算法 。

    92 引用 • 752 回帖 • 2 关注
  • Oracle

    Oracle(甲骨文)公司,全称甲骨文股份有限公司(甲骨文软件系统有限公司),是全球最大的企业级软件公司,总部位于美国加利福尼亚州的红木滩。1989 年正式进入中国市场。2013 年,甲骨文已超越 IBM,成为继 Microsoft 后全球第二大软件公司。

    107 引用 • 127 回帖 • 344 关注
  • frp

    frp 是一个可用于内网穿透的高性能的反向代理应用,支持 TCP、UDP、 HTTP 和 HTTPS 协议。

    17 引用 • 7 回帖
  • iOS

    iOS 是由苹果公司开发的移动操作系统,最早于 2007 年 1 月 9 日的 Macworld 大会上公布这个系统,最初是设计给 iPhone 使用的,后来陆续套用到 iPod touch、iPad 以及 Apple TV 等产品上。iOS 与苹果的 Mac OS X 操作系统一样,属于类 Unix 的商业操作系统。

    89 引用 • 150 回帖 • 3 关注
  • 互联网

    互联网(Internet),又称网际网络,或音译因特网、英特网。互联网始于 1969 年美国的阿帕网,是网络与网络之间所串连成的庞大网络,这些网络以一组通用的协议相连,形成逻辑上的单一巨大国际网络。

    98 引用 • 367 回帖
  • Log4j

    Log4j 是 Apache 开源的一款使用广泛的 Java 日志组件。

    20 引用 • 18 回帖 • 37 关注
  • Pipe

    Pipe 是一款小而美的开源博客平台。Pipe 有着非常活跃的社区,可将文章作为帖子推送到社区,来自社区的回帖将作为博客评论进行联动(具体细节请浏览 B3log 构思 - 分布式社区网络)。

    这是一种全新的网络社区体验,让热爱记录和分享的你不再感到孤单!

    134 引用 • 1127 回帖 • 110 关注
  • 新人

    让我们欢迎这对新人。哦,不好意思说错了,让我们欢迎这位新人!
    新手上路,请谨慎驾驶!

    52 引用 • 228 回帖
  • Gitea

    Gitea 是一个开源社区驱动的轻量级代码托管解决方案,后端采用 Go 编写,采用 MIT 许可证。

    5 引用 • 16 回帖
  • 心情

    心是产生任何想法的源泉,心本体会陷入到对自己本体不能理解的状态中,因为心能产生任何想法,不能分出对错,不能分出自己。

    59 引用 • 369 回帖
  • 旅游

    希望你我能在旅途中找到人生的下一站。

    98 引用 • 903 回帖 • 1 关注
  • InfluxDB

    InfluxDB 是一个开源的没有外部依赖的时间序列数据库。适用于记录度量,事件及实时分析。

    2 引用 • 101 关注
  • RIP

    愿逝者安息!

    8 引用 • 92 回帖 • 408 关注
  • NGINX

    NGINX 是一个高性能的 HTTP 和反向代理服务器,也是一个 IMAP/POP3/SMTP 代理服务器。 NGINX 是由 Igor Sysoev 为俄罗斯访问量第二的 Rambler.ru 站点开发的,第一个公开版本 0.1.0 发布于 2004 年 10 月 4 日。

    315 引用 • 547 回帖 • 1 关注
  • jsoup

    jsoup 是一款 Java 的 HTML 解析器,可直接解析某个 URL 地址、HTML 文本内容。它提供了一套非常省力的 API,可通过 DOM,CSS 以及类似于 jQuery 的操作方法来取出和操作数据。

    6 引用 • 1 回帖 • 496 关注
  • 锤子科技

    锤子科技(Smartisan)成立于 2012 年 5 月,是一家制造移动互联网终端设备的公司,公司的使命是用完美主义的工匠精神,打造用户体验一流的数码消费类产品(智能手机为主),改善人们的生活质量。

    4 引用 • 31 回帖 • 4 关注
  • ReactiveX

    ReactiveX 是一个专注于异步编程与控制可观察数据(或者事件)流的 API。它组合了观察者模式,迭代器模式和函数式编程的优秀思想。

    1 引用 • 2 回帖 • 179 关注
  • C

    C 语言是一门通用计算机编程语言,应用广泛。C 语言的设计目标是提供一种能以简易的方式编译、处理低级存储器、产生少量的机器码以及不需要任何运行环境支持便能运行的编程语言。

    86 引用 • 165 回帖 • 3 关注
  • JetBrains

    JetBrains 是一家捷克的软件开发公司,该公司位于捷克的布拉格,并在俄国的圣彼得堡及美国麻州波士顿都设有办公室,该公司最为人所熟知的产品是 Java 编程语言开发撰写时所用的集成开发环境:IntelliJ IDEA

    18 引用 • 54 回帖
  • API

    应用程序编程接口(Application Programming Interface)是一些预先定义的函数,目的是提供应用程序与开发人员基于某软件或硬件得以访问一组例程的能力,而又无需访问源码,或理解内部工作机制的细节。

    79 引用 • 431 回帖
  • Chrome

    Chrome 又称 Google 浏览器,是一个由谷歌公司开发的网页浏览器。该浏览器是基于其他开源软件所编写,包括 WebKit,目标是提升稳定性、速度和安全性,并创造出简单且有效率的使用者界面。

    63 引用 • 289 回帖
  • 前端

    前端技术一般分为前端设计和前端开发,前端设计可以理解为网站的视觉设计,前端开发则是网站的前台代码实现,包括 HTML、CSS 以及 JavaScript 等。

    246 引用 • 1338 回帖
  • Ant-Design

    Ant Design 是服务于企业级产品的设计体系,基于确定和自然的设计价值观上的模块化解决方案,让设计者和开发者专注于更好的用户体验。

    17 引用 • 23 回帖 • 2 关注
  • 黑曜石

    黑曜石是一款强大的知识库工具,支持本地 Markdown 文件编辑,支持双向链接和关系图。

    A second brain, for you, forever.

    24 引用 • 246 回帖
  • 京东

    京东是中国最大的自营式电商企业,2015 年第一季度在中国自营式 B2C 电商市场的占有率为 56.3%。2014 年 5 月,京东在美国纳斯达克证券交易所正式挂牌上市(股票代码:JD),是中国第一个成功赴美上市的大型综合型电商平台,与腾讯、百度等中国互联网巨头共同跻身全球前十大互联网公司排行榜。

    14 引用 • 102 回帖 • 311 关注