核显 DirectML 深度学习环境

本贴最后更新于 982 天前,其中的信息可能已经沧海桑田

参考文档:

  tensorflow-directml 官方文档

  Enable TensorFlow with DirectML in WSL

  ‍

  环境: win10 + wsl2-ubuntu20.04

  安装显卡驱动(确保型号匹配,我是 amd 的 r5 核显):

  1. py36 环境安装

    截至 2022 年 10 月 5 日, tensorflow-directml==1.15.8 最高支持 py37,但是其依赖 gast 0.2.2 并不支持 pep517 的方式安装,推荐用 py36 版本。
    若已有 py3.6 或者用 conda 安装可以跳过这一步。

    cd $HOME curl -Lo https://www.python.org/ftp/python/3.6.14/Python-3.6.14.tar.xz tar xJvf Python-3.6.14.tar.xz cd Python-3.6.14 install -dv $HOME/.local/lib/python3.6 ./configure --prefix=$HOME/.local/lib/python3.6 make && make install # 添加环境变量 install -dv $HOME/.local/bin/ ln -s $HOME/.local/lib/python3.6/bin/python3.6 $HOME/.local/bin/python36 # 检测是否成功 python36 -V # Python 3.6.14 # 安装成功后移除安装包 rm -rf Python-3.6.14/ Python-3.6.14.tar.xz
  2. pdm 配置

    仍推荐直接用 conda,用 pdm 多半是为了节省硬盘。pdm 安装和使用可以参考 pdm 简易使用说明pdm 官方手册

    自行添加需要的依赖。注意,因为使用 py3.6,所以 py 模块的编译使用的是 flit_core, 而非 pdm 默认的 pdm.pep517.api

    install -dv PDM-Project/tensorflow-gpu cd PDM-Project/tensorflow-gpu # 生成PDM配置文件 cat <<'EOF' | tee pyproject.toml [project] name = "" version = "" description = "" authors = [ {name = "your_name", email = "your_email"}, ] dependencies = [ "tensorflow-directml==1.15.8", "matplotlib==3.3.4", "jupyter==1.0.0", "scipy==1.5.4", ] license = {text = "MIT"} requires-python = ">=3.6.2" [tool.pdm] [tool.pdm.dev-dependencies] lint = [ "flake8", "black" ] [[tool.pdm.source]] url = "https://mirrors.aliyun.com/pypi/simple/" verify_ssl = true name = "pypi" [build-system] requires = ["flit_core >=3.2,<4"] build-backend = "flit_core.buildapi" 'EOF'

    然后选择 py 版本,并下载依赖包。

    # 选择对应的python36版本 ➜ pdm use Please enter the Python interpreter to use 0. /home/bingo/.local/pipx/venvs/pdm/bin/python (3.8) 1. /usr/bin/python3.8 (3.8) 2. /home/bingo/.local/bin/python37 (3.7) 3. /home/bingo/.local/bin/python36 (3.6) Please select (0): 3 Using Python interpreter: /home/bingo/.local/bin/python36 (3.6) # 下载依赖 ➜ pdm update --save-compatible
  3. 结合 vscode python 工作区使用

    vscode python 插件从 2022.10.0 开始不再支持 py36debug,要回滚至 v2022.8.1

    1. 创建 python 工作区,添加 python 相关开发的插件。vscode 配置、调试 python 的已经有很多教程了,自行百度。

    2. 将 PDM-Project 添加至工作区,方便后面复制 Path

    3. 将需要写的项目添加至工作区

    4. 在项目 .vscode 目录下添加 settings.json 文件(第一步的配置应该在工作区,这一步的配置只对项目生效),添加 pylance 的 extra 路径配置。(如果不配置,pylance 插件会提示缺少模块文件,以及没有对应的代码补全)

      // settings.json // 根据自己的PDM-Project/tensorflow-gpu库和py36路径调整 { "python.autoComplete.extraPaths": [ "your_path/PDM-Project/tensorflow-gpu/__pypackages__/3.6/lib" ], "python.analysis.extraPaths": [ "your_path/PDM-Project/tensorflow-gpu/__pypackages__/3.6/lib" ], "python.analysis.autoSearchPaths": true, "python.defaultInterpreterPath": "your_py36Path", "python.envFile": "${workspaceFolder}/.env", }
    5. 在项目 .vscode 目录下添加 .env 文件,这样子 launchF5 的时候可以关联 python.analysis.extraPaths 声明的目录到 PYTHONPATH 变量。根据实际路径调整

      PYTHONPATH=your_path/PDM-Project/tensorflow-gpu/__pypackages__/3.6/lib

      不推荐在 .vsocode/launch.json 中添加 env,因为对 vscode-jupyter 不生效。

    6. 测试是否使用显卡(请务必用 vscode 的 luanch 运行,不然是无法链接到 python.analysis.extraPaths

      import tensorflow as tf tf.test.is_gpu_available() print(tf.test.is_gpu_available(cuda_only=False)) # output DirectML device enumeration: found 1 compatible adapters. DirectML: creating device on adapter 0 (AMD Radeon(TM) Graphics True

  性能就不测试了,只能说比用 cpu 快那么一丢丢。

  ‍

注意事项

  1. 安装 amd 显卡驱动后,待机时 cpu 负载异常

    86c37d7d3fa5747ff790abd5db0644b.jpg
    在 WMI 错误事件中锁定 pid 号

    2491dfcd6d6c7e6feeddb3730aef2f2.jpg

    5cd3cec5e597f70217fbd5ff01228d5.jpg这是因为勾选了 amd 的匿名信息收集(AMD User Experience Program),在 amd 的驱动程序中关闭收集就好了。

  ‍

为什么使用 pdm?

  1. 节约空间,因为经常要从网上下载库,总会需要添加环境。如果是用 conda 的环境管理,每创建一个虚拟环境就会多拷贝一份 python 二进制文件、标准库。以及在多数项目中存在相同依赖包,在虚拟环境中,都是存在冗余的。

    pdm 并不创建虚拟环境(除了 pdm 运行本身会创建虚拟环境),并且模块库是通过 PEP582 本地链接的方式,可以极大节省硬盘空间(需要开启配置 install.cache = True install.cache_method = symlink)。(主要是我的 wsl2 装在固态硬盘上,能省则省)

    # 可以看到下载的模块文件基本都是软连接ls -al your_path/PDM-Project/tensorflow-gpu/__pypackages__/3.6/lib # 使用pdm后,依赖包的总空间占用大小du -sh ~/codeEnv/pyCache/packages/ 1.4G /home/bingo/codeEnv/pyCache/packages/
  2. 有没有好方法复用当前配置好的项目开发环境?

    pdm2.0 推出了虚拟环境(本质上还是基于 virtualenv/venv/conda),我并不是很推荐这个。如果没有更改依赖的话,推荐将配置好的 .vscode 目录和 .env 目录拷贝到 PDM-Project 对应的项目目录下。后续要复用直接将这两个 copy 到新的项目目录下即可。

  image.png

  ‍

  • Python

    Python 是一种面向对象、直译式电脑编程语言,具有近二十年的发展历史,成熟且稳定。它包含了一组完善而且容易理解的标准库,能够轻松完成很多常见的任务。它的语法简捷和清晰,尽量使用无异义的英语单词,与其它大多数程序设计语言使用大括号不一样,它使用缩进来定义语句块。

    554 引用 • 675 回帖
  • DirectML
    1 引用
  • 深度学习

    深度学习(Deep Learning)是机器学习的分支,是一种试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的算法。

    43 引用 • 44 回帖 • 2 关注

相关帖子

欢迎来到这里!

我们正在构建一个小众社区,大家在这里相互信任,以平等 • 自由 • 奔放的价值观进行分享交流。最终,希望大家能够找到与自己志同道合的伙伴,共同成长。

注册 关于
请输入回帖内容 ...

推荐标签 标签

  • GitHub

    GitHub 于 2008 年上线,目前,除了 Git 代码仓库托管及基本的 Web 管理界面以外,还提供了订阅、讨论组、文本渲染、在线文件编辑器、协作图谱(报表)、代码片段分享(Gist)等功能。正因为这些功能所提供的便利,又经过长期的积累,GitHub 的用户活跃度很高,在开源世界里享有深远的声望,并形成了社交化编程文化(Social Coding)。

    209 引用 • 2040 回帖
  • MySQL

    MySQL 是一个关系型数据库管理系统,由瑞典 MySQL AB 公司开发,目前属于 Oracle 公司。MySQL 是最流行的关系型数据库管理系统之一。

    693 引用 • 537 回帖 • 1 关注
  • LaTeX

    LaTeX(音译“拉泰赫”)是一种基于 ΤΕΧ 的排版系统,由美国计算机学家莱斯利·兰伯特(Leslie Lamport)在 20 世纪 80 年代初期开发,利用这种格式,即使使用者没有排版和程序设计的知识也可以充分发挥由 TeX 所提供的强大功能,能在几天,甚至几小时内生成很多具有书籍质量的印刷品。对于生成复杂表格和数学公式,这一点表现得尤为突出。因此它非常适用于生成高印刷质量的科技和数学类文档。

    12 引用 • 59 回帖 • 4 关注
  • MyBatis

    MyBatis 本是 Apache 软件基金会 的一个开源项目 iBatis,2010 年这个项目由 Apache 软件基金会迁移到了 google code,并且改名为 MyBatis ,2013 年 11 月再次迁移到了 GitHub。

    173 引用 • 414 回帖 • 367 关注
  • BookxNote

    BookxNote 是一款全新的电子书学习工具,助力您的学习与思考,让您的大脑更高效的记忆。

    笔记整理交给我,一心只读圣贤书。

    1 引用 • 1 回帖
  • Maven

    Maven 是基于项目对象模型(POM)、通过一小段描述信息来管理项目的构建、报告和文档的软件项目管理工具。

    188 引用 • 319 回帖 • 245 关注
  • Firefox

    Mozilla Firefox 中文俗称“火狐”(正式缩写为 Fx 或 fx,非正式缩写为 FF),是一个开源的网页浏览器,使用 Gecko 排版引擎,支持多种操作系统,如 Windows、OSX 及 Linux 等。

    7 引用 • 30 回帖 • 385 关注
  • API

    应用程序编程接口(Application Programming Interface)是一些预先定义的函数,目的是提供应用程序与开发人员基于某软件或硬件得以访问一组例程的能力,而又无需访问源码,或理解内部工作机制的细节。

    79 引用 • 431 回帖
  • SpaceVim

    SpaceVim 是一个社区驱动的模块化 vim/neovim 配置集合,以模块的方式组织管理插件以
    及相关配置,为不同的语言开发量身定制了相关的开发模块,该模块提供代码自动补全,
    语法检查、格式化、调试、REPL 等特性。用户仅需载入相关语言的模块即可得到一个开箱
    即用的 Vim-IDE。

    3 引用 • 31 回帖 • 111 关注
  • 工具

    子曰:“工欲善其事,必先利其器。”

    298 引用 • 763 回帖
  • Q&A

    提问之前请先看《提问的智慧》,好的问题比好的答案更有价值。

    9951 引用 • 45204 回帖 • 77 关注
  • 友情链接

    确认过眼神后的灵魂连接,站在链在!

    24 引用 • 373 回帖
  • Pipe

    Pipe 是一款小而美的开源博客平台。Pipe 有着非常活跃的社区,可将文章作为帖子推送到社区,来自社区的回帖将作为博客评论进行联动(具体细节请浏览 B3log 构思 - 分布式社区网络)。

    这是一种全新的网络社区体验,让热爱记录和分享的你不再感到孤单!

    134 引用 • 1127 回帖 • 109 关注
  • Gzip

    gzip (GNU zip)是 GNU 自由软件的文件压缩程序。我们在 Linux 中经常会用到后缀为 .gz 的文件,它们就是 Gzip 格式的。现今已经成为互联网上使用非常普遍的一种数据压缩格式,或者说一种文件格式。

    9 引用 • 12 回帖 • 176 关注
  • GAE

    Google App Engine(GAE)是 Google 管理的数据中心中用于 WEB 应用程序的开发和托管的平台。2008 年 4 月 发布第一个测试版本。目前支持 Python、Java 和 Go 开发部署。全球已有数十万的开发者在其上开发了众多的应用。

    14 引用 • 42 回帖 • 818 关注
  • Thymeleaf

    Thymeleaf 是一款用于渲染 XML/XHTML/HTML5 内容的模板引擎。类似 Velocity、 FreeMarker 等,它也可以轻易的与 Spring 等 Web 框架进行集成作为 Web 应用的模板引擎。与其它模板引擎相比,Thymeleaf 最大的特点是能够直接在浏览器中打开并正确显示模板页面,而不需要启动整个 Web 应用。

    11 引用 • 19 回帖 • 395 关注
  • 智能合约

    智能合约(Smart contract)是一种旨在以信息化方式传播、验证或执行合同的计算机协议。智能合约允许在没有第三方的情况下进行可信交易,这些交易可追踪且不可逆转。智能合约概念于 1994 年由 Nick Szabo 首次提出。

    1 引用 • 11 回帖 • 2 关注
  • jsoup

    jsoup 是一款 Java 的 HTML 解析器,可直接解析某个 URL 地址、HTML 文本内容。它提供了一套非常省力的 API,可通过 DOM,CSS 以及类似于 jQuery 的操作方法来取出和操作数据。

    6 引用 • 1 回帖 • 490 关注
  • 游戏

    沉迷游戏伤身,强撸灰飞烟灭。

    185 引用 • 825 回帖
  • Flume

    Flume 是一套分布式的、可靠的,可用于有效地收集、聚合和搬运大量日志数据的服务架构。

    9 引用 • 6 回帖 • 661 关注
  • SQLServer

    SQL Server 是由 [微软] 开发和推广的关系数据库管理系统(DBMS),它最初是由 微软、Sybase 和 Ashton-Tate 三家公司共同开发的,并于 1988 年推出了第一个 OS/2 版本。

    21 引用 • 31 回帖
  • 运维

    互联网运维工作,以服务为中心,以稳定、安全、高效为三个基本点,确保公司的互联网业务能够 7×24 小时为用户提供高质量的服务。

    151 引用 • 257 回帖
  • 以太坊

    以太坊(Ethereum)并不是一个机构,而是一款能够在区块链上实现智能合约、开源的底层系统。以太坊是一个平台和一种编程语言 Solidity,使开发人员能够建立和发布下一代去中心化应用。 以太坊可以用来编程、分散、担保和交易任何事物:投票、域名、金融交易所、众筹、公司管理、合同和知识产权等等。

    34 引用 • 367 回帖
  • GitBook

    GitBook 使您的团队可以轻松编写和维护高质量的文档。 分享知识,提高团队的工作效率,让用户满意。

    3 引用 • 8 回帖 • 5 关注
  • OneNote
    1 引用 • 3 回帖 • 1 关注
  • Ant-Design

    Ant Design 是服务于企业级产品的设计体系,基于确定和自然的设计价值观上的模块化解决方案,让设计者和开发者专注于更好的用户体验。

    17 引用 • 23 回帖 • 2 关注
  • WordPress

    WordPress 是一个使用 PHP 语言开发的博客平台,用户可以在支持 PHP 和 MySQL 数据库的服务器上架设自己的博客。也可以把 WordPress 当作一个内容管理系统(CMS)来使用。WordPress 是一个免费的开源项目,在 GNU 通用公共许可证(GPLv2)下授权发布。

    45 引用 • 114 回帖 • 174 关注