Spark mllib API- classification

本贴最后更新于 3544 天前,其中的信息可能已经渤澥桑田

Apark mllib API 的翻译 - 分类篇。 对官方文档进行翻译的同时加入了一些常识性知识。

更多分类的相关知识可以查看我的另外一篇博客数据挖掘算法初窥门庭--分类回归

Spark 当前提供 LogisticRegression、SVM、NaiveBayes。


##LogisticRegression 逻辑回归

###背景知识

LinerRegression 是使用线性方程对数据进行两分类(在线的一侧属于同一类)。而 LogisticRegression 就是一个被 logistic 方程归一化后的 LinerRegression(归一化后值域为 0-1)。LogisticRegression 一般也用于两分类,预测样本属于某个类别的概率。

LogisticRegression 的过程是典型的监督机器学习,也就是在规则化参数的同时最小化误差。最小化误差是为了让我们的模型拟合我们的训练数据,而规则化参数是防止我们的模型过分拟合我们的训练数据。
大致步骤如下:

  • 目标函数为 f(f 为未知的),我们假定目标函数为 h。(假设)
  • 构造损失函数 cost(基于最大似然估计),表示 h 的预测结果与实际结果 f 之间的偏差。(预测并评估)
  • 通过迭代,调整 h,使 h 与 f 尽可能接近。(求最优解)

LogisticRegression 有很多不同的算法版本,大多数的主要不同在于求最优解。目前,spark 提供两种 LogisticRegression 方法:SGD(随机梯度下降)和 LBFGS(改进的拟牛顿法)。

特征选择:

  • LogisticRegression 假设向量的各个维度是独立不相互影响的。
  • 由于 LogisticRegression 的终止条件是收敛或达到最大迭代次数,因此在数据预处理时进行归一化,加快收敛速度。
  • 更多具体的变量选择方法,参考华山大师兄的 Logistic Regression--逻辑回归算法汇总

###Spark API

  • 类:pyspark.mllib.classification.LogisticRegressionWithSGD
    • 方法:
      train(data, iterations=100, step=1.0, miniBatchFraction=1.0, initialWeights=None, regParam=0.01, regType='l2', intercept=False, validateData=True, convergenceTol=0.001)
      通过给定数据训练逻辑回归模型。
      • data:训练数据,LabeledPoint 格式的 RDD 数据集。
      • iterations:迭代次数,默认为 100。
      • step:SGD 的步长,默认为 1.0。(太大容易错过最优解,太小导致迭代次数过多)。
      • miniBatchFraction:用于每次 SGD 迭代的数据,默认 1.0。(SGD 每次迭代选用随机数据)。
      • initialWeights:初始权值,默认 None。
      • regParam:规则化参数,默认 0.01。
      • regType:用于训练模型的规则化类型,可选为 l1 或 l2(默认)。
      • intercept:布尔值,表示是否使用增强表现来训练数据,默认 False。
      • validateData:布尔值,表示算法是否在训练前检验数据,默认 True。
      • convergenceTol:终止迭代的收敛值,默认 0.001。

  • 类: pyspark.mllib.classification.LogisticRegressionWithLBFGS
    • 方法:
      train(data, iterations=100, initialWeights=None, regParam=0.01, regType='l2', intercept=False, corrections=10, tolerance=0.0001, validateData=True, numClasses=2)
      通过给定数据训练逻辑回归模型。
      • data:训练数据,LabeledPoint 格式的 RDD 数据集。
      • iterations:迭代次数,默认为 100。
      • initialWeights:初始权值,默认 None。
      • regParam:规则化参数,默认 0.01。
      • regType:用于训练模型的规则化类型,可选为 l1 或 l2(默认)。
      • intercept:布尔值,表示是否使用增强表现来训练数据,默认 False。
      • corrections:用于 LBFGS 更新的修正值,默认 10。
      • tolerance:LBFGS 迭代的收敛容忍系数,默认 1e-4。
      • validateData:布尔值,表示算法是否在训练前检验数据,默认 True。
      • numClasses:多分类逻辑回归中类别的个数,默认 2。

  • 类:pyspark.mllib.classification.LogisticRegressionModel
    使用多/两逻辑分类方法训练得到的模型。
    • 属性:
      • weights:每个向量计算的权值。
      • intercept:该模型的计算截距(只用于两逻辑回归)。
      • numFeatures:向量的维度。
      • numClasses:输出类别的个数。
      • threshold:用于区分正负样本的阈值。
    • 方法: clearThreshold()
      去除阈值,直接输出预测值,只用于两分类
    • 方法: load(sc, path)
      从指定路径加载模型
    • 方法: save(sc, path)
      将模型保存到指定路径
    • 方法: predict(x)
      预测,输入可以为单个向量或整个 RDD
    • 方法: setThreshold(value)
      设置用于区分正负样本的阈值。当预测值大于该预置时,判定为正样本。

SVM 支持向量机

###背景知识

SVM 是二分类的分类模型。给定包含正负样本的数据集,SVM 的目的是寻找一个超平面(WX+b=0)对样本进行分割,且使得离超平面比较近的点能有更大的间距。

(待补充)


###Spark API

  • 类:class pyspark.mllib.classification.SVMWithSGD
    • 方法:
      train(data, iterations=100, step=1.0, regParam=0.01, miniBatchFraction=1.0, initialWeights=None, regType='l2', intercept=False, validateData=True, convergenceTol=0.001)
      通过给定的数据训练 SVM 模型。
      • data:训练数据,LabeledPoint 格式的 RDD 数据集。
      • iterations:迭代次数,默认为 100。
      • step:SGD 的步长,默认为 1.0。
      • regParam:规则化参数,默认 0.01。
      • miniBatchFraction:用于每次 SGD 迭代的数据,默认 1.0。
      • initialWeights:初始权值,默认 None。
      • regType:用于训练模型的规则化类型,可选为 l1 或 l2(默认)。
      • intercept:布尔值,表示是否使用增强表现来训练数据,默认 False。
      • validateData:布尔值,表示算法是否在训练前检验数据,默认 True。
      • convergenceTol:终止迭代的收敛值,默认 0.001。

  • 类: pyspark.mllib.classification.SVMModel
    支持向量机模型
    • 属性:
      • weights:每个向量计算的权值。
      • intercept:该模型的计算截距。
    • 方法: clearThreshold()
      去除阈值,直接输出预测值
    • 方法: load(sc, path)
      从指定路径加载模型
    • 方法: save(sc, path)
      将模型保存到指定路径
    • 方法: predict(x)
      预测,输入可以为单个向量或整个 RDD
    • 方法: setThreshold(value)
      设置用于区分正负样本的阈值。当预测值大于该预置时,判定为正样本。

##NaiveBayes 朴素贝叶斯
###背景知识
贝叶斯概率公式:
P(B[j]|A[i])=P(A[i]|B[j])P(B[j]) / P(A[i])
朴素贝叶斯分类器是使用贝叶斯概率公式为核心的分类算法,其基本思想为:对于给出的待分类项,求解在此项出现的条件下各个类别出现的概率,哪个最大,就认为此待分类项属于哪个类别。
朴素贝叶斯假定样本的不同特征属性对样本的归类影响时相互独立的。

(待补充)


###Spark API

  • 类:pyspark.mllib.classification.NaiveBayes
    • 方法:
      train(data, lambda_=1.0)
      通过给定数据集训练贝叶斯模型
      • data:训练数据,LabeledPoint 格式的 RDD 数据集。
      • lambda:平滑参数,默认 1.0

  • 类: pyspark.mllib.classification.NaiveBayesModel
    朴素贝叶斯分类器模型
    • 属性:
      • labels:label 列表
      • pi:每个类别的 priors
      • theta:使用矩阵存储每个向量划分到每个类的条件概率
    • 方法: load(sc, path)
      从指定路径加载模型
    • 方法: save(sc, path)
      将模型保存到指定路径
    • 方法: predict(x)
      预测,输入可以为单个向量或整个 RDD
  • Spark

    Spark 是 UC Berkeley AMP lab 所开源的类 Hadoop MapReduce 的通用并行框架。Spark 拥有 Hadoop MapReduce 所具有的优点;但不同于 MapReduce 的是 Job 中间输出结果可以保存在内存中,从而不再需要读写 HDFS,因此 Spark 能更好地适用于数据挖掘与机器学习等需要迭代的 MapReduce 的算法。

    74 引用 • 46 回帖 • 563 关注
  • 数据挖掘
    17 引用 • 32 回帖 • 3 关注
  • 默认
    5 引用 • 22 回帖

相关帖子

欢迎来到这里!

我们正在构建一个小众社区,大家在这里相互信任,以平等 • 自由 • 奔放的价值观进行分享交流。最终,希望大家能够找到与自己志同道合的伙伴,共同成长。

注册 关于
请输入回帖内容 ...

推荐标签 标签

  • 以太坊

    以太坊(Ethereum)并不是一个机构,而是一款能够在区块链上实现智能合约、开源的底层系统。以太坊是一个平台和一种编程语言 Solidity,使开发人员能够建立和发布下一代去中心化应用。 以太坊可以用来编程、分散、担保和交易任何事物:投票、域名、金融交易所、众筹、公司管理、合同和知识产权等等。

    34 引用 • 367 回帖 • 1 关注
  • SSL

    SSL(Secure Sockets Layer 安全套接层),及其继任者传输层安全(Transport Layer Security,TLS)是为网络通信提供安全及数据完整性的一种安全协议。TLS 与 SSL 在传输层对网络连接进行加密。

    70 引用 • 193 回帖 • 403 关注
  • 微信

    腾讯公司 2011 年 1 月 21 日推出的一款手机通讯软件。用户可以通过摇一摇、搜索号码、扫描二维码等添加好友和关注公众平台,同时可以将自己看到的精彩内容分享到微信朋友圈。

    135 引用 • 798 回帖 • 2 关注
  • LaTeX

    LaTeX(音译“拉泰赫”)是一种基于 ΤΕΧ 的排版系统,由美国计算机学家莱斯利·兰伯特(Leslie Lamport)在 20 世纪 80 年代初期开发,利用这种格式,即使使用者没有排版和程序设计的知识也可以充分发挥由 TeX 所提供的强大功能,能在几天,甚至几小时内生成很多具有书籍质量的印刷品。对于生成复杂表格和数学公式,这一点表现得尤为突出。因此它非常适用于生成高印刷质量的科技和数学类文档。

    14 引用 • 84 回帖
  • 工具

    子曰:“工欲善其事,必先利其器。”

    308 引用 • 773 回帖
  • Visio
    1 引用 • 2 回帖 • 1 关注
  • MyBatis

    MyBatis 本是 Apache 软件基金会 的一个开源项目 iBatis,2010 年这个项目由 Apache 软件基金会迁移到了 google code,并且改名为 MyBatis ,2013 年 11 月再次迁移到了 GitHub。

    174 引用 • 414 回帖 • 344 关注
  • React

    React 是 Facebook 开源的一个用于构建 UI 的 JavaScript 库。

    192 引用 • 291 回帖 • 350 关注
  • Solidity

    Solidity 是一种智能合约高级语言,运行在 [以太坊] 虚拟机(EVM)之上。它的语法接近于 JavaScript,是一种面向对象的语言。

    3 引用 • 18 回帖 • 458 关注
  • BookxNote

    BookxNote 是一款全新的电子书学习工具,助力您的学习与思考,让您的大脑更高效的记忆。

    笔记整理交给我,一心只读圣贤书。

    1 引用 • 1 回帖 • 1 关注
  • Sublime

    Sublime Text 是一款可以用来写代码、写文章的文本编辑器。支持代码高亮、自动完成,还支持通过插件进行扩展。

    10 引用 • 5 回帖 • 1 关注
  • Dubbo

    Dubbo 是一个分布式服务框架,致力于提供高性能和透明化的 RPC 远程服务调用方案,是 [阿里巴巴] SOA 服务化治理方案的核心框架,每天为 2,000+ 个服务提供 3,000,000,000+ 次访问量支持,并被广泛应用于阿里巴巴集团的各成员站点。

    60 引用 • 82 回帖 • 636 关注
  • Latke

    Latke 是一款以 JSON 为主的 Java Web 框架。

    71 引用 • 535 回帖 • 847 关注
  • NetBeans

    NetBeans 是一个始于 1997 年的 Xelfi 计划,本身是捷克布拉格查理大学的数学及物理学院的学生计划。此计划延伸而成立了一家公司进而发展这个商用版本的 NetBeans IDE,直到 1999 年 Sun 买下此公司。Sun 于次年(2000 年)六月将 NetBeans IDE 开源,直到现在 NetBeans 的社群依然持续增长。

    78 引用 • 102 回帖 • 724 关注
  • SQLServer

    SQL Server 是由 [微软] 开发和推广的关系数据库管理系统(DBMS),它最初是由 微软、Sybase 和 Ashton-Tate 三家公司共同开发的,并于 1988 年推出了第一个 OS/2 版本。

    21 引用 • 31 回帖 • 1 关注
  • sts
    2 引用 • 2 回帖 • 260 关注
  • BAE

    百度应用引擎(Baidu App Engine)提供了 PHP、Java、Python 的执行环境,以及云存储、消息服务、云数据库等全面的云服务。它可以让开发者实现自动地部署和管理应用,并且提供动态扩容和负载均衡的运行环境,让开发者不用考虑高成本的运维工作,只需专注于业务逻辑,大大降低了开发者学习和迁移的成本。

    19 引用 • 75 回帖 • 702 关注
  • 分享

    有什么新发现就分享给大家吧!

    251 引用 • 1801 回帖 • 1 关注
  • JVM

    JVM(Java Virtual Machine)Java 虚拟机是一个微型操作系统,有自己的硬件构架体系,还有相应的指令系统。能够识别 Java 独特的 .class 文件(字节码),能够将这些文件中的信息读取出来,使得 Java 程序只需要生成 Java 虚拟机上的字节码后就能在不同操作系统平台上进行运行。

    180 引用 • 120 回帖 • 1 关注
  • 黑曜石

    黑曜石是一款强大的知识库工具,支持本地 Markdown 文件编辑,支持双向链接和关系图。

    A second brain, for you, forever.

    34 引用 • 333 回帖 • 1 关注
  • 设计模式

    设计模式(Design pattern)代表了最佳的实践,通常被有经验的面向对象的软件开发人员所采用。设计模式是软件开发人员在软件开发过程中面临的一般问题的解决方案。这些解决方案是众多软件开发人员经过相当长的一段时间的试验和错误总结出来的。

    201 引用 • 120 回帖
  • Node.js

    Node.js 是一个基于 Chrome JavaScript 运行时建立的平台, 用于方便地搭建响应速度快、易于扩展的网络应用。Node.js 使用事件驱动, 非阻塞 I/O 模型而得以轻量和高效。

    139 引用 • 269 回帖 • 1 关注
  • Swift

    Swift 是苹果于 2014 年 WWDC(苹果开发者大会)发布的开发语言,可与 Objective-C 共同运行于 Mac OS 和 iOS 平台,用于搭建基于苹果平台的应用程序。

    34 引用 • 37 回帖 • 565 关注
  • C++

    C++ 是在 C 语言的基础上开发的一种通用编程语言,应用广泛。C++ 支持多种编程范式,面向对象编程、泛型编程和过程化编程。

    110 引用 • 153 回帖
  • Ngui

    Ngui 是一个 GUI 的排版显示引擎和跨平台的 GUI 应用程序开发框架,基于
    Node.js / OpenGL。目标是在此基础上开发 GUI 应用程序可拥有开发 WEB 应用般简单与速度同时兼顾 Native 应用程序的性能与体验。

    7 引用 • 9 回帖 • 429 关注
  • Office

    Office 现已更名为 Microsoft 365. Microsoft 365 将高级 Office 应用(如 Word、Excel 和 PowerPoint)与 1 TB 的 OneDrive 云存储空间、高级安全性等结合在一起,可帮助你在任何设备上完成操作。

    6 引用 • 35 回帖
  • RYMCU

    RYMCU 致力于打造一个即严谨又活泼、专业又不失有趣,为数百万人服务的开源嵌入式知识学习交流平台。

    4 引用 • 6 回帖 • 56 关注