Spark mllib API- classification

本贴最后更新于 3385 天前,其中的信息可能已经渤澥桑田

Apark mllib API 的翻译 - 分类篇。 对官方文档进行翻译的同时加入了一些常识性知识。

更多分类的相关知识可以查看我的另外一篇博客数据挖掘算法初窥门庭--分类回归

Spark 当前提供 LogisticRegression、SVM、NaiveBayes。


##LogisticRegression 逻辑回归

###背景知识

LinerRegression 是使用线性方程对数据进行两分类(在线的一侧属于同一类)。而 LogisticRegression 就是一个被 logistic 方程归一化后的 LinerRegression(归一化后值域为 0-1)。LogisticRegression 一般也用于两分类,预测样本属于某个类别的概率。

LogisticRegression 的过程是典型的监督机器学习,也就是在规则化参数的同时最小化误差。最小化误差是为了让我们的模型拟合我们的训练数据,而规则化参数是防止我们的模型过分拟合我们的训练数据。
大致步骤如下:

  • 目标函数为 f(f 为未知的),我们假定目标函数为 h。(假设)
  • 构造损失函数 cost(基于最大似然估计),表示 h 的预测结果与实际结果 f 之间的偏差。(预测并评估)
  • 通过迭代,调整 h,使 h 与 f 尽可能接近。(求最优解)

LogisticRegression 有很多不同的算法版本,大多数的主要不同在于求最优解。目前,spark 提供两种 LogisticRegression 方法:SGD(随机梯度下降)和 LBFGS(改进的拟牛顿法)。

特征选择:

  • LogisticRegression 假设向量的各个维度是独立不相互影响的。
  • 由于 LogisticRegression 的终止条件是收敛或达到最大迭代次数,因此在数据预处理时进行归一化,加快收敛速度。
  • 更多具体的变量选择方法,参考华山大师兄的 Logistic Regression--逻辑回归算法汇总

###Spark API

  • 类:pyspark.mllib.classification.LogisticRegressionWithSGD
    • 方法:
      train(data, iterations=100, step=1.0, miniBatchFraction=1.0, initialWeights=None, regParam=0.01, regType='l2', intercept=False, validateData=True, convergenceTol=0.001)
      通过给定数据训练逻辑回归模型。
      • data:训练数据,LabeledPoint 格式的 RDD 数据集。
      • iterations:迭代次数,默认为 100。
      • step:SGD 的步长,默认为 1.0。(太大容易错过最优解,太小导致迭代次数过多)。
      • miniBatchFraction:用于每次 SGD 迭代的数据,默认 1.0。(SGD 每次迭代选用随机数据)。
      • initialWeights:初始权值,默认 None。
      • regParam:规则化参数,默认 0.01。
      • regType:用于训练模型的规则化类型,可选为 l1 或 l2(默认)。
      • intercept:布尔值,表示是否使用增强表现来训练数据,默认 False。
      • validateData:布尔值,表示算法是否在训练前检验数据,默认 True。
      • convergenceTol:终止迭代的收敛值,默认 0.001。

  • 类: pyspark.mllib.classification.LogisticRegressionWithLBFGS
    • 方法:
      train(data, iterations=100, initialWeights=None, regParam=0.01, regType='l2', intercept=False, corrections=10, tolerance=0.0001, validateData=True, numClasses=2)
      通过给定数据训练逻辑回归模型。
      • data:训练数据,LabeledPoint 格式的 RDD 数据集。
      • iterations:迭代次数,默认为 100。
      • initialWeights:初始权值,默认 None。
      • regParam:规则化参数,默认 0.01。
      • regType:用于训练模型的规则化类型,可选为 l1 或 l2(默认)。
      • intercept:布尔值,表示是否使用增强表现来训练数据,默认 False。
      • corrections:用于 LBFGS 更新的修正值,默认 10。
      • tolerance:LBFGS 迭代的收敛容忍系数,默认 1e-4。
      • validateData:布尔值,表示算法是否在训练前检验数据,默认 True。
      • numClasses:多分类逻辑回归中类别的个数,默认 2。

  • 类:pyspark.mllib.classification.LogisticRegressionModel
    使用多/两逻辑分类方法训练得到的模型。
    • 属性:
      • weights:每个向量计算的权值。
      • intercept:该模型的计算截距(只用于两逻辑回归)。
      • numFeatures:向量的维度。
      • numClasses:输出类别的个数。
      • threshold:用于区分正负样本的阈值。
    • 方法: clearThreshold()
      去除阈值,直接输出预测值,只用于两分类
    • 方法: load(sc, path)
      从指定路径加载模型
    • 方法: save(sc, path)
      将模型保存到指定路径
    • 方法: predict(x)
      预测,输入可以为单个向量或整个 RDD
    • 方法: setThreshold(value)
      设置用于区分正负样本的阈值。当预测值大于该预置时,判定为正样本。

SVM 支持向量机

###背景知识

SVM 是二分类的分类模型。给定包含正负样本的数据集,SVM 的目的是寻找一个超平面(WX+b=0)对样本进行分割,且使得离超平面比较近的点能有更大的间距。

(待补充)


###Spark API

  • 类:class pyspark.mllib.classification.SVMWithSGD
    • 方法:
      train(data, iterations=100, step=1.0, regParam=0.01, miniBatchFraction=1.0, initialWeights=None, regType='l2', intercept=False, validateData=True, convergenceTol=0.001)
      通过给定的数据训练 SVM 模型。
      • data:训练数据,LabeledPoint 格式的 RDD 数据集。
      • iterations:迭代次数,默认为 100。
      • step:SGD 的步长,默认为 1.0。
      • regParam:规则化参数,默认 0.01。
      • miniBatchFraction:用于每次 SGD 迭代的数据,默认 1.0。
      • initialWeights:初始权值,默认 None。
      • regType:用于训练模型的规则化类型,可选为 l1 或 l2(默认)。
      • intercept:布尔值,表示是否使用增强表现来训练数据,默认 False。
      • validateData:布尔值,表示算法是否在训练前检验数据,默认 True。
      • convergenceTol:终止迭代的收敛值,默认 0.001。

  • 类: pyspark.mllib.classification.SVMModel
    支持向量机模型
    • 属性:
      • weights:每个向量计算的权值。
      • intercept:该模型的计算截距。
    • 方法: clearThreshold()
      去除阈值,直接输出预测值
    • 方法: load(sc, path)
      从指定路径加载模型
    • 方法: save(sc, path)
      将模型保存到指定路径
    • 方法: predict(x)
      预测,输入可以为单个向量或整个 RDD
    • 方法: setThreshold(value)
      设置用于区分正负样本的阈值。当预测值大于该预置时,判定为正样本。

##NaiveBayes 朴素贝叶斯
###背景知识
贝叶斯概率公式:
P(B[j]|A[i])=P(A[i]|B[j])P(B[j]) / P(A[i])
朴素贝叶斯分类器是使用贝叶斯概率公式为核心的分类算法,其基本思想为:对于给出的待分类项,求解在此项出现的条件下各个类别出现的概率,哪个最大,就认为此待分类项属于哪个类别。
朴素贝叶斯假定样本的不同特征属性对样本的归类影响时相互独立的。

(待补充)


###Spark API

  • 类:pyspark.mllib.classification.NaiveBayes
    • 方法:
      train(data, lambda_=1.0)
      通过给定数据集训练贝叶斯模型
      • data:训练数据,LabeledPoint 格式的 RDD 数据集。
      • lambda:平滑参数,默认 1.0

  • 类: pyspark.mllib.classification.NaiveBayesModel
    朴素贝叶斯分类器模型
    • 属性:
      • labels:label 列表
      • pi:每个类别的 priors
      • theta:使用矩阵存储每个向量划分到每个类的条件概率
    • 方法: load(sc, path)
      从指定路径加载模型
    • 方法: save(sc, path)
      将模型保存到指定路径
    • 方法: predict(x)
      预测,输入可以为单个向量或整个 RDD
  • Spark

    Spark 是 UC Berkeley AMP lab 所开源的类 Hadoop MapReduce 的通用并行框架。Spark 拥有 Hadoop MapReduce 所具有的优点;但不同于 MapReduce 的是 Job 中间输出结果可以保存在内存中,从而不再需要读写 HDFS,因此 Spark 能更好地适用于数据挖掘与机器学习等需要迭代的 MapReduce 的算法。

    74 引用 • 46 回帖 • 564 关注
  • 数据挖掘
    17 引用 • 32 回帖 • 3 关注
  • 默认
    5 引用 • 22 回帖

相关帖子

欢迎来到这里!

我们正在构建一个小众社区,大家在这里相互信任,以平等 • 自由 • 奔放的价值观进行分享交流。最终,希望大家能够找到与自己志同道合的伙伴,共同成长。

注册 关于
请输入回帖内容 ...
  • zempty via macOS

    ????1???😇

推荐标签 标签

  • 数据库

    据说 99% 的性能瓶颈都在数据库。

    346 引用 • 760 回帖
  • OneDrive
    2 引用 • 3 关注
  • JWT

    JWT(JSON Web Token)是一种用于双方之间传递信息的简洁的、安全的表述性声明规范。JWT 作为一个开放的标准(RFC 7519),定义了一种简洁的,自包含的方法用于通信双方之间以 JSON 的形式安全的传递信息。

    20 引用 • 15 回帖 • 27 关注
  • RemNote
    2 引用 • 16 回帖 • 25 关注
  • Webswing

    Webswing 是一个能将任何 Swing 应用通过纯 HTML5 运行在浏览器中的 Web 服务器,详细介绍请看 将 Java Swing 应用变成 Web 应用

    1 引用 • 15 回帖 • 642 关注
  • JetBrains

    JetBrains 是一家捷克的软件开发公司,该公司位于捷克的布拉格,并在俄国的圣彼得堡及美国麻州波士顿都设有办公室,该公司最为人所熟知的产品是 Java 编程语言开发撰写时所用的集成开发环境:IntelliJ IDEA

    18 引用 • 54 回帖
  • uTools

    uTools 是一个极简、插件化、跨平台的现代桌面软件。通过自由选配丰富的插件,打造你得心应手的工具集合。

    7 引用 • 28 回帖
  • Jenkins

    Jenkins 是一套开源的持续集成工具。它提供了非常丰富的插件,让构建、部署、自动化集成项目变得简单易用。

    54 引用 • 37 回帖 • 1 关注
  • Telegram

    Telegram 是一个非盈利性、基于云端的即时消息服务。它提供了支持各大操作系统平台的开源的客户端,也提供了很多强大的 APIs 给开发者创建自己的客户端和机器人。

    5 引用 • 35 回帖
  • Love2D

    Love2D 是一个开源的, 跨平台的 2D 游戏引擎。使用纯 Lua 脚本来进行游戏开发。目前支持的平台有 Windows, Mac OS X, Linux, Android 和 iOS。

    14 引用 • 53 回帖 • 563 关注
  • MyBatis

    MyBatis 本是 Apache 软件基金会 的一个开源项目 iBatis,2010 年这个项目由 Apache 软件基金会迁移到了 google code,并且改名为 MyBatis ,2013 年 11 月再次迁移到了 GitHub。

    173 引用 • 414 回帖 • 364 关注
  • Mobi.css

    Mobi.css is a lightweight, flexible CSS framework that focus on mobile.

    1 引用 • 6 回帖 • 766 关注
  • Visio
    1 引用 • 2 回帖 • 2 关注
  • Solo

    Solo 是一款小而美的开源博客系统,专为程序员设计。Solo 有着非常活跃的社区,可将文章作为帖子推送到社区,来自社区的回帖将作为博客评论进行联动(具体细节请浏览 B3log 构思 - 分布式社区网络)。

    这是一种全新的网络社区体验,让热爱记录和分享的你不再感到孤单!

    1444 引用 • 10083 回帖 • 507 关注
  • SQLServer

    SQL Server 是由 [微软] 开发和推广的关系数据库管理系统(DBMS),它最初是由 微软、Sybase 和 Ashton-Tate 三家公司共同开发的,并于 1988 年推出了第一个 OS/2 版本。

    21 引用 • 31 回帖 • 2 关注
  • 域名

    域名(Domain Name),简称域名、网域,是由一串用点分隔的名字组成的 Internet 上某一台计算机或计算机组的名称,用于在数据传输时标识计算机的电子方位(有时也指地理位置)。

    43 引用 • 208 回帖 • 1 关注
  • 酷鸟浏览器

    安全 · 稳定 · 快速
    为跨境从业人员提供专业的跨境浏览器

    3 引用 • 59 回帖 • 53 关注
  • 爬虫

    网络爬虫(Spider、Crawler),是一种按照一定的规则,自动地抓取万维网信息的程序。

    106 引用 • 275 回帖
  • LeetCode

    LeetCode(力扣)是一个全球极客挚爱的高质量技术成长平台,想要学习和提升专业能力从这里开始,充足技术干货等你来啃,轻松拿下 Dream Offer!

    209 引用 • 72 回帖 • 2 关注
  • CodeMirror
    2 引用 • 17 回帖 • 174 关注
  • 百度

    百度(Nasdaq:BIDU)是全球最大的中文搜索引擎、最大的中文网站。2000 年 1 月由李彦宏创立于北京中关村,致力于向人们提供“简单,可依赖”的信息获取方式。“百度”二字源于中国宋朝词人辛弃疾的《青玉案·元夕》词句“众里寻他千百度”,象征着百度对中文信息检索技术的执著追求。

    63 引用 • 785 回帖 • 68 关注
  • 人工智能

    人工智能(Artificial Intelligence)是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门技术科学。

    115 引用 • 319 回帖
  • 架构

    我们平时所说的“架构”主要是指软件架构,这是有关软件整体结构与组件的抽象描述,用于指导软件系统各个方面的设计。另外还有“业务架构”、“网络架构”、“硬件架构”等细分领域。

    142 引用 • 442 回帖
  • Vim

    Vim 是类 UNIX 系统文本编辑器 Vi 的加强版本,加入了更多特性来帮助编辑源代码。Vim 的部分增强功能包括文件比较(vimdiff)、语法高亮、全面的帮助系统、本地脚本(Vimscript)和便于选择的可视化模式。

    29 引用 • 66 回帖 • 1 关注
  • WiFiDog

    WiFiDog 是一套开源的无线热点认证管理工具,主要功能包括:位置相关的内容递送;用户认证和授权;集中式网络监控。

    1 引用 • 7 回帖 • 615 关注
  • Java

    Java 是一种可以撰写跨平台应用软件的面向对象的程序设计语言,是由 Sun Microsystems 公司于 1995 年 5 月推出的。Java 技术具有卓越的通用性、高效性、平台移植性和安全性。

    3202 引用 • 8217 回帖
  • 尊园地产

    昆明尊园房地产经纪有限公司,即:Kunming Zunyuan Property Agency Company Limited(简称“尊园地产”)于 2007 年 6 月开始筹备,2007 年 8 月 18 日正式成立,注册资本 200 万元,公司性质为股份经纪有限公司,主营业务为:代租、代售、代办产权过户、办理银行按揭、担保、抵押、评估等。

    1 引用 • 22 回帖 • 799 关注