机器学习 (4)——神经网络

本贴最后更新于 2477 天前,其中的信息可能已经事过景迁

0x00 神经网络

人工神经网络(Artificial Neural Network,缩写 ANN),简称神经网络(Neural Network,缩写 NN),是一种模仿生物神经网络(动物的中枢神经系统,特别是大脑)的结构和功能的数学模型或计算模型,用于对函数进行估计或近似。

0x01 神经元

一个神经元通常具有多个树突,主要用来接受传入信息;而轴突只有一条,轴突尾端有许多轴突末梢可以给其他多个神经元传递信息。轴突末梢跟其他神经元的树突产生连接,从而传递信号。这个连接的位置在生物学上叫做“突触”。

人脑中神经元如图:

0x02 神经元的数学模型

神经元模型是一个包含输入,输出与计算功能的模型。输入可以类比为神经元的树突,而输出可以类比为神经元的轴突,计算则可以类比为细胞核。

每个连线上都会分配一个权值,在数据传向下一层的时候要乘以对应的权值。在神经网络中,每个箭头表示值的加权传递。

如果我们将神经元图中的所有变量用符号表示,并且写出输出的计算公式,就会得到:

z 是在输入和权值的线性加权和叠加了一个激活函数 g 的值。在 MP 模型里,函数 g 是 sgn 函数,也就是取符号函数。这个函数当输入大于 0 时,输出 1,否则输出-1。

接下来我们将 sum 函数与 sgn 函数合并到一个圆圈里,代表神经元的内部计算。其次,把输入 a 与输出 z 写到连接线的左上方,便于后面画复杂的网络。一个神经元可以引出多个代表输出的有向箭头,但值都是一样的。

在其他类型神经网络中,这里的激活函数可以有很多种形式:

  • 线性函数

  • 阈值函数

  • Sigmoid 函数

  • 对称 Sigmoid 函数

  • 双曲正切函数

  • 高斯函数

神经元可以看作一个计算与存储单元。计算是神经元对其的输入进行计算功能。存储是神经元会暂存计算结果,并传递到下一层。

一个神经网络的训练算法的功能就是通过大量的样本数据训练,让权重的值调整到最佳,以使得整个网络的预测效果最好。然后用来在已知所有输入值的情况下预测输出值。

0x03 单层神经网络(感知器)

感知器(Perceptron)由两层神经元组成的神经网络。两层分别是输入层和输出层,输入层只负责传输数据,输出层对前一层传输过来的数据进行计算。

结构如下:

其中,需要计算的层次也被称为计算层,因为感知器拥有一个计算层,所以称之为“单层神经网络”。

感知器中,我们把 w 称为权重向量,a 称为训练样本。

感知器数据分类的算法步骤如下:

把 w 初始化为 0,或者把 w 的每个分量初始化为[0, 1]之间的任意小数;

把训练样本 a 输入感知器,得到分类结果 z (-1 或 1);

根据分类结果更新权重向量。

权重更新算法:

wj=wj+∇wj

∇wj=η∗(z−z′)∗aj

其中

  • η 是学习率,在 [0,1] 之间。
  • z 是输入样本的正确分类,z’ 是感知器计算出来的分类。

假设初始 w=[0,0,0],a=[1,2,3],z=1,z’=-1 时,通过算法计算:

∇w0=0.3∗(1−(−1))∗x0=0.3∗2∗1=0.6

w0=w0+∇w0=0.6

∇w1=0.3∗(1−(−1))∗x1=0.3∗2∗2=1.2

w1=w1+∇w1=1.2

∇w2=0.3∗(1−(−1))∗x2=0.3∗2∗3=1.8

w2=w2+∇w2=1.8

得到更新后的 w=[0.6,1.2,1.8]

我们在输入大量样本时,每次在答案正确时不会更改,每次在答案错误时更新权值,只要取的学习率和样本量合适,就可以得到学习之后更为精准的算法。

我们可以看到,感知器类似一个逻辑回归模型,可以做线性分类任务。

我们可以用决策分界来形象的表达分类的效果。决策分界就是在二维的数据平面中划出一条直线,当数据的维度是 3 维的时候,就是划出一个平面,当数据的维度是 n 维时,就是划出一个 n-1 维的超平面。

0x04 两层神经网络(多层感知器)

两层神经网络也就是多了一层计算层(被称为隐藏层),在增加了这一层之后,神经网络就可以解决一些复杂的问题。

此时,权值矩阵增加到两个,计算层数分为隐藏层计算和输出层计算。

不过不同于单层的 sgn 函数,在两层神经网络中,我们使用的激活函数最多的是 sigmoid 函数。

隐藏层计算如图:

输出层计算如图:

总的计算公式:

g(W(1) * a(1)) = a(2);

g(W(2) * a(2)) = z;

与单层神经网络不同。理论证明,两层神经网络可以无限逼近任意连续函数。也就是说,面对复杂的非线性分类任务,两层(带一个隐藏层)神经网络可以分类的很好。

如下例,红色的线与蓝色的线代表数据。而红色区域和蓝色区域代表由神经网络划开的区域,两者的分界线就是决策分界。

0x05 多层神经网络

延续两层神经网络,在两层神经网络的输出层后面,继续添加层次。原来的输出层变成中间层,新加的层次成为新的输出层。我们这样依次添加,就会产生多层神经网络。

增加了层数,那么正向传播计算公式也会增加一步

g(W(1) * a(1)) = a(2);

g(W(2) * a(2)) = a(3);

g(W(3) * a(3)) = z;

再增加层数的话,与上面同理递推即可:

g(W(1) * a(1)) = a(2);

g(W(2) * a(2)) = a(3);

···

g(w(n-1) * a(n-1)) = a(n);

g(W(n) * a(n)) = z;

随着网络的层数增加,每一层对于前一层次的抽象表示更深入。代表着更深入的表示特征,以及更强的函数模拟能力。在参数数量一样的情况下,更深的网络往往具有比浅层的网络更好的识别效率。

相比于单层神经网络的 sgn 函数和双层神经网络的 sigmoid 函数,到了多层神经网络时,通过一系列的研究发现,ReLU 函数在训练多层神经网络时,更容易收敛,并且预测性能更好。

ReLU 函数不是传统的非线性函数,而是分段线性函数。其表达式非常简单,就是 y=max(x,0)。简而言之,在 x 大于 0,输出就是输入,而在 x 小于 0 时,输出就保持为 0。这种函数的设计启发来自于生物神经元对于激励的线性响应,以及当低于某个阈值后就不再响应的模拟。

  • 机器学习

    机器学习(Machine Learning)是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。

    77 引用 • 37 回帖

相关帖子

欢迎来到这里!

我们正在构建一个小众社区,大家在这里相互信任,以平等 • 自由 • 奔放的价值观进行分享交流。最终,希望大家能够找到与自己志同道合的伙伴,共同成长。

注册 关于
请输入回帖内容 ...

推荐标签 标签

  • Postman

    Postman 是一款简单好用的 HTTP API 调试工具。

    4 引用 • 3 回帖 • 3 关注
  • 支付宝

    支付宝是全球领先的独立第三方支付平台,致力于为广大用户提供安全快速的电子支付/网上支付/安全支付/手机支付体验,及转账收款/水电煤缴费/信用卡还款/AA 收款等生活服务应用。

    29 引用 • 347 回帖
  • Latke

    Latke 是一款以 JSON 为主的 Java Web 框架。

    71 引用 • 535 回帖 • 830 关注
  • Solidity

    Solidity 是一种智能合约高级语言,运行在 [以太坊] 虚拟机(EVM)之上。它的语法接近于 JavaScript,是一种面向对象的语言。

    3 引用 • 18 回帖 • 445 关注
  • Shell

    Shell 脚本与 Windows/Dos 下的批处理相似,也就是用各类命令预先放入到一个文件中,方便一次性执行的一个程序文件,主要是方便管理员进行设置或者管理用的。但是它比 Windows 下的批处理更强大,比用其他编程程序编辑的程序效率更高,因为它使用了 Linux/Unix 下的命令。

    125 引用 • 74 回帖 • 2 关注
  • ngrok

    ngrok 是一个反向代理,通过在公共的端点和本地运行的 Web 服务器之间建立一个安全的通道。

    7 引用 • 63 回帖 • 656 关注
  • 开源

    Open Source, Open Mind, Open Sight, Open Future!

    415 引用 • 3598 回帖 • 1 关注
  • Caddy

    Caddy 是一款默认自动启用 HTTPS 的 HTTP/2 Web 服务器。

    10 引用 • 54 回帖 • 180 关注
  • Ngui

    Ngui 是一个 GUI 的排版显示引擎和跨平台的 GUI 应用程序开发框架,基于
    Node.js / OpenGL。目标是在此基础上开发 GUI 应用程序可拥有开发 WEB 应用般简单与速度同时兼顾 Native 应用程序的性能与体验。

    7 引用 • 9 回帖 • 407 关注
  • 链滴

    链滴是一个记录生活的地方。

    记录生活,连接点滴

    183 引用 • 3887 回帖
  • Node.js

    Node.js 是一个基于 Chrome JavaScript 运行时建立的平台, 用于方便地搭建响应速度快、易于扩展的网络应用。Node.js 使用事件驱动, 非阻塞 I/O 模型而得以轻量和高效。

    139 引用 • 269 回帖
  • Office

    Office 现已更名为 Microsoft 365. Microsoft 365 将高级 Office 应用(如 Word、Excel 和 PowerPoint)与 1 TB 的 OneDrive 云存储空间、高级安全性等结合在一起,可帮助你在任何设备上完成操作。

    5 引用 • 34 回帖
  • WordPress

    WordPress 是一个使用 PHP 语言开发的博客平台,用户可以在支持 PHP 和 MySQL 数据库的服务器上架设自己的博客。也可以把 WordPress 当作一个内容管理系统(CMS)来使用。WordPress 是一个免费的开源项目,在 GNU 通用公共许可证(GPLv2)下授权发布。

    46 引用 • 114 回帖 • 166 关注
  • jsDelivr

    jsDelivr 是一个开源的 CDN 服务,可为 npm 包、GitHub 仓库提供免费、快速并且可靠的全球 CDN 加速服务。

    5 引用 • 31 回帖 • 108 关注
  • InfluxDB

    InfluxDB 是一个开源的没有外部依赖的时间序列数据库。适用于记录度量,事件及实时分析。

    2 引用 • 106 关注
  • Hexo

    Hexo 是一款快速、简洁且高效的博客框架,使用 Node.js 编写。

    22 引用 • 148 回帖 • 12 关注
  • 笔记

    好记性不如烂笔头。

    311 引用 • 794 回帖
  • CSS

    CSS(Cascading Style Sheet)“层叠样式表”是用于控制网页样式并允许将样式信息与网页内容分离的一种标记性语言。

    198 引用 • 543 回帖 • 4 关注
  • SVN

    SVN 是 Subversion 的简称,是一个开放源代码的版本控制系统,相较于 RCS、CVS,它采用了分支管理系统,它的设计目标就是取代 CVS。

    29 引用 • 98 回帖 • 698 关注
  • Ruby

    Ruby 是一种开源的面向对象程序设计的服务器端脚本语言,在 20 世纪 90 年代中期由日本的松本行弘(まつもとゆきひろ/Yukihiro Matsumoto)设计并开发。在 Ruby 社区,松本也被称为马茨(Matz)。

    7 引用 • 31 回帖 • 271 关注
  • MongoDB

    MongoDB(来自于英文单词“Humongous”,中文含义为“庞大”)是一个基于分布式文件存储的数据库,由 C++ 语言编写。旨在为应用提供可扩展的高性能数据存储解决方案。MongoDB 是一个介于关系数据库和非关系数据库之间的产品,是非关系数据库当中功能最丰富,最像关系数据库的。它支持的数据结构非常松散,是类似 JSON 的 BSON 格式,因此可以存储比较复杂的数据类型。

    91 引用 • 59 回帖 • 2 关注
  • App

    App(应用程序,Application 的缩写)一般指手机软件。

    91 引用 • 384 回帖
  • MySQL

    MySQL 是一个关系型数据库管理系统,由瑞典 MySQL AB 公司开发,目前属于 Oracle 公司。MySQL 是最流行的关系型数据库管理系统之一。

    694 引用 • 537 回帖 • 5 关注
  • 书籍

    宋真宗赵恒曾经说过:“书中自有黄金屋,书中自有颜如玉。”

    84 引用 • 414 回帖
  • API

    应用程序编程接口(Application Programming Interface)是一些预先定义的函数,目的是提供应用程序与开发人员基于某软件或硬件得以访问一组例程的能力,而又无需访问源码,或理解内部工作机制的细节。

    79 引用 • 431 回帖
  • JRebel

    JRebel 是一款 Java 虚拟机插件,它使得 Java 程序员能在不进行重部署的情况下,即时看到代码的改变对一个应用程序带来的影响。

    26 引用 • 78 回帖 • 685 关注
  • 学习

    “梦想从学习开始,事业从实践起步” —— 习近平

    172 引用 • 541 回帖