Lambda 表达式对递归的优化 (下) - 使用备忘录模式 (Memoization Pattern)

本贴最后更新于 1287 天前,其中的信息可能已经时移世异

原文链接

使用备忘录模式(Memoization Pattern)提高性能
这个模式说白了,就是将需要进行大量计算的结果缓存起来,然后在下次需要的时候直接取得就好了。因此,底层只需要使用一个 Map 就够了。

但是需要注意的是,只有一组参数对应得到的是同一个值时,该模式才有用武之地。

在很多算法中,典型的比如分治法,动态规划(Dynamic Programming)等算法中,这个模式运用的十分广泛。 以动态规划来说,动态规划在求最优解的过程中,会将原有任务分解成若干个子任务,而这些子任务势必还会将自身分解成更小的任务。因此,从整体而言会有相当多的重复的小任务需要被求解。显然,当输入的参数相同时,一个任务只需要被求解一次就好了,求解之后将结果保存起来。待下次需要求解这个任务时,会首先查询这个任务是否已经被解决了,如果答案是肯定的,那么只需要直接返回结果就行了。

就是这么一个简单的优化措施,往往能够将代码的时间复杂度从指数级的变成线性级。

以一个经典的杆切割问题(Rod Cutting Problem)(或者这里也有更加正式的定义:维基百科)为例,来讨论一下如何结合 Lambda 表达式来实现备忘录模式。

首先,简单交代一下这个问题的背景。

一个公司会批发一些杆(Rod),然后对它们进行零售。但是随着杆的长度不同,能够卖出的价格也是不同的。所以该公司为了将利润最大化,需要结合长度价格信息来决定应该将杆切割成什么长度,才能实现利润最大化。

比如,下面的代码:

final List priceValues = Arrays.asList(2, 1, 1, 2, 2, 2, 1, 8, 9, 15);
表达的意思是:长度为 1 的杆能够卖 2 元,长度为 2 的杆能够卖 1 元,以此类推,长度为 10 的杆能够卖 15 元。

当需要被切割的杆长度为 5 时,存在的切割方法多达 16 种(2^(5 - 1))。如下所示:

针对这个问题,在不考虑使用备忘录模式的情况下,可以使用动态规划算法实现如下:

public int maxProfit(final int length) {
int profit = (length <= prices.size()) ? prices.get(length - 1) : 0;
for(int i = 1; i < length; i++) {
int priceWhenCut = maxProfit(i) + maxProfit(length - i);
if(profit < priceWhenCut) profit = priceWhenCut;
}
return profit;
}
而从上面的程序可以发现,有很多重复的子问题。对这些重复的子问题进行不断纠结,损失了很多不必要的性能。分别取杆长为 5 和 22 时,得到的运行时间分别为:0.001 秒和 34.612 秒。可见当杆的长度增加时,性能的下降时非常非常显著的。

因为备忘录模式的原理十分简单,因此实现起来也很简单,只需要在以上 maxProfit 方法的头部加上 Map 的读取操作并判断结果就可以了。但是这样做的话,代码的复用性会不太好。每个需要使用备忘录模式的地方,都需要单独写判断逻辑,那么有没有一种通用的办法呢?答案是肯定的,通过借助 Lambda 表达式的力量可以轻易办到,以下代码我们假设有一个静态方法 callMemoized 用来通过传入一个策略和输入值,来求出最优解:

public int maxProfit(final int rodLenth) {
return callMemoized(
(final Function<Integer, Integer> func, final Integer length) -> {
int profit = (length <= prices.size()) ? prices.get(length - 1) : 0;
for(int i = 1; i < length; i++) {
int priceWhenCut = func.apply(i) + func.apply(length - i);
if(profit < priceWhenCut) profit = priceWhenCut;
}
return profit;
}, rodLenth);
}
让我们仔细分析一下这段代码的意图。首先 callMemoized 方法接受的参数类型是这样的:

public static <T, R> R callMemoized(final BiFunction<Function<T,R>, T, R> function, final T input)
BiFunction 类型的参数 function 实际上封装了一个策略,其中有三个部分:

Function:通过传入参数 T,来得到解答 R。这一点从代码 int priceWhenCut = func.apply(i) + func.apply(length - i)很明显的就能够看出来。可以把它想象成一个备忘录的入口。
T:代表求解问题时需要的参数 T。
R:代表问题的答案 R。
以上的 T 和 R 都是指的类型。

下面我们看看 callMemoized 方法的实现:

public class Memoizer {
public static <T, R> R callMemoized(final BiFunction<Function<T,R>, T, R> function, final T input) {
Function<T, R> memoized = new Function<T, R>() {
private final Map<T, R> store = new HashMap<>();
public R apply(final T input) {
return store.computeIfAbsent(input, key -> function.apply(this, key));
}
};

return memoized.apply(input); }

}
在该方法中,首先声明了一个匿名 Function 函数接口的实现。其中定义了备忘录模式的核心---Map 结构。 然后在它的 apply 方法中,会借助 Java 8 中为 Map 接口新添加的一个 computeIfAbsent 方法来完成下面的逻辑:

通过传入的 key 检查(在以上代码中是 input)对应的值是否存在于备忘录的底层 Map 中
如果存在,跳转到步骤 4
如果不存在,根据 computeIfAbsent 的第二个参数(是一个 Lambda 表达式)来计算得到 key 对应的 value
返回得到的 value
具体到该方法的源码:

default V computeIfAbsent(K key, Function<? super K, ? extends V> mappingFunction) {
Objects.requireNonNull(mappingFunction);
V v;
if ((v = get(key)) == null) {
V newValue;
if ((newValue = mappingFunction.apply(key)) != null) {
put(key, newValue);
return newValue;
}
}

return v;

}
也可以很清晰地看出以上的几个步骤是如何体现在代码中的。

关键的地方就在于第三步,如果不存在对应的 value,那么需要调用传入的 Lambda 表达式进行求解。以上代码传入的是 key -> function.apply(this, key),这里的 this 使用的十分巧妙,它实际上指向的就是这个用于容纳 Map 结构的匿名 Function 实例。它作为第一个参数传入到算法策略中,同时需要求解的 key 被当做第二个参数传入到算法策略。这里所谓的算法策略,实际上就是在调用 callMemoized 方法时,传入的形式为 BiFunction<Function<T,R>, T, R> 的参数。

因此,所有的子问题仅仅会被求解一次。在得到子问题的答案之后,答案会被放到 Map 数据结构中,以便将来的使用。这就是借助 Lambda 表示实现备忘录模式的方法。

以上的代码可能会显得有些怪异,这很正常。在你反复阅读它们后,并且经过自己的思考能够重写它们时,也就是你对 Lambda 表达式拥有更深理解之时。

使用备忘录模式后,杆长仍然取 5 和 22 时,得到的运行时间分别为:0.050 秒和 0.092 秒。可见当杆的长度增加时,性能并没有如之前那样下降的很厉害。这完全是得益于备忘录模式,此时所有的任务都只会被运行一次。

  • Java

    Java 是一种可以撰写跨平台应用软件的面向对象的程序设计语言,是由 Sun Microsystems 公司于 1995 年 5 月推出的。Java 技术具有卓越的通用性、高效性、平台移植性和安全性。

    3201 引用 • 8216 回帖 • 4 关注
  • Lambda
    24 引用 • 19 回帖

相关帖子

欢迎来到这里!

我们正在构建一个小众社区,大家在这里相互信任,以平等 • 自由 • 奔放的价值观进行分享交流。最终,希望大家能够找到与自己志同道合的伙伴,共同成长。

注册 关于
请输入回帖内容 ...
zhaozhizheng
没有人会关心你付出过多少努力,撑得累不累,摔得痛不痛,他们只会看你最后站在什么位置,然后羡慕或者鄙夷 北京

推荐标签 标签

  • JVM

    JVM(Java Virtual Machine)Java 虚拟机是一个微型操作系统,有自己的硬件构架体系,还有相应的指令系统。能够识别 Java 独特的 .class 文件(字节码),能够将这些文件中的信息读取出来,使得 Java 程序只需要生成 Java 虚拟机上的字节码后就能在不同操作系统平台上进行运行。

    180 引用 • 120 回帖 • 3 关注
  • Notion

    Notion - The all-in-one workspace for your notes, tasks, wikis, and databases.

    10 引用 • 77 回帖
  • CloudFoundry

    Cloud Foundry 是 VMware 推出的业界第一个开源 PaaS 云平台,它支持多种框架、语言、运行时环境、云平台及应用服务,使开发人员能够在几秒钟内进行应用程序的部署和扩展,无需担心任何基础架构的问题。

    5 引用 • 18 回帖 • 192 关注
  • React

    React 是 Facebook 开源的一个用于构建 UI 的 JavaScript 库。

    192 引用 • 291 回帖 • 370 关注
  • Dubbo

    Dubbo 是一个分布式服务框架,致力于提供高性能和透明化的 RPC 远程服务调用方案,是 [阿里巴巴] SOA 服务化治理方案的核心框架,每天为 2,000+ 个服务提供 3,000,000,000+ 次访问量支持,并被广泛应用于阿里巴巴集团的各成员站点。

    60 引用 • 82 回帖 • 615 关注
  • 区块链

    区块链是分布式数据存储、点对点传输、共识机制、加密算法等计算机技术的新型应用模式。所谓共识机制是区块链系统中实现不同节点之间建立信任、获取权益的数学算法 。

    92 引用 • 752 回帖 • 1 关注
  • OpenStack

    OpenStack 是一个云操作系统,通过数据中心可控制大型的计算、存储、网络等资源池。所有的管理通过前端界面管理员就可以完成,同样也可以通过 Web 接口让最终用户部署资源。

    10 引用 • 2 关注
  • MyBatis

    MyBatis 本是 Apache 软件基金会 的一个开源项目 iBatis,2010 年这个项目由 Apache 软件基金会迁移到了 google code,并且改名为 MyBatis ,2013 年 11 月再次迁移到了 GitHub。

    173 引用 • 414 回帖 • 363 关注
  • Telegram

    Telegram 是一个非盈利性、基于云端的即时消息服务。它提供了支持各大操作系统平台的开源的客户端,也提供了很多强大的 APIs 给开发者创建自己的客户端和机器人。

    5 引用 • 35 回帖 • 1 关注
  • flomo

    flomo 是新一代 「卡片笔记」 ,专注在碎片化时代,促进你的记录,帮你积累更多知识资产。

    6 引用 • 143 回帖
  • Oracle

    Oracle(甲骨文)公司,全称甲骨文股份有限公司(甲骨文软件系统有限公司),是全球最大的企业级软件公司,总部位于美国加利福尼亚州的红木滩。1989 年正式进入中国市场。2013 年,甲骨文已超越 IBM,成为继 Microsoft 后全球第二大软件公司。

    107 引用 • 127 回帖 • 342 关注
  • 工具

    子曰:“工欲善其事,必先利其器。”

    299 引用 • 766 回帖
  • Vue.js

    Vue.js(读音 /vju ː/,类似于 view)是一个构建数据驱动的 Web 界面库。Vue.js 的目标是通过尽可能简单的 API 实现响应的数据绑定和组合的视图组件。

    268 引用 • 666 回帖 • 1 关注
  • uTools

    uTools 是一个极简、插件化、跨平台的现代桌面软件。通过自由选配丰富的插件,打造你得心应手的工具集合。

    7 引用 • 28 回帖 • 1 关注
  • Pipe

    Pipe 是一款小而美的开源博客平台。Pipe 有着非常活跃的社区,可将文章作为帖子推送到社区,来自社区的回帖将作为博客评论进行联动(具体细节请浏览 B3log 构思 - 分布式社区网络)。

    这是一种全新的网络社区体验,让热爱记录和分享的你不再感到孤单!

    134 引用 • 1127 回帖 • 109 关注
  • DevOps

    DevOps(Development 和 Operations 的组合词)是一组过程、方法与系统的统称,用于促进开发(应用程序/软件工程)、技术运营和质量保障(QA)部门之间的沟通、协作与整合。

    59 引用 • 25 回帖
  • JavaScript

    JavaScript 一种动态类型、弱类型、基于原型的直译式脚本语言,内置支持类型。它的解释器被称为 JavaScript 引擎,为浏览器的一部分,广泛用于客户端的脚本语言,最早是在 HTML 网页上使用,用来给 HTML 网页增加动态功能。

    730 引用 • 1282 回帖 • 4 关注
  • wolai

    我来 wolai:不仅仅是未来的云端笔记!

    2 引用 • 14 回帖 • 4 关注
  • gRpc
    11 引用 • 9 回帖 • 98 关注
  • CAP

    CAP 指的是在一个分布式系统中, Consistency(一致性)、 Availability(可用性)、Partition tolerance(分区容错性),三者不可兼得。

    12 引用 • 5 回帖 • 635 关注
  • 电影

    这是一个不能说的秘密。

    122 引用 • 608 回帖
  • Jenkins

    Jenkins 是一套开源的持续集成工具。它提供了非常丰富的插件,让构建、部署、自动化集成项目变得简单易用。

    54 引用 • 37 回帖
  • OkHttp

    OkHttp 是一款 HTTP & HTTP/2 客户端库,专为 Android 和 Java 应用打造。

    16 引用 • 6 回帖 • 93 关注
  • 旅游

    希望你我能在旅途中找到人生的下一站。

    98 引用 • 903 回帖
  • 博客

    记录并分享人生的经历。

    273 引用 • 2388 回帖 • 2 关注
  • RemNote
    2 引用 • 16 回帖 • 23 关注
  • WordPress

    WordPress 是一个使用 PHP 语言开发的博客平台,用户可以在支持 PHP 和 MySQL 数据库的服务器上架设自己的博客。也可以把 WordPress 当作一个内容管理系统(CMS)来使用。WordPress 是一个免费的开源项目,在 GNU 通用公共许可证(GPLv2)下授权发布。

    45 引用 • 114 回帖 • 171 关注