Lambda 表达式对递归的优化 (下) - 使用备忘录模式 (Memoization Pattern)

本贴最后更新于 1075 天前,其中的信息可能已经时移世异

原文链接

使用备忘录模式(Memoization Pattern)提高性能
这个模式说白了,就是将需要进行大量计算的结果缓存起来,然后在下次需要的时候直接取得就好了。因此,底层只需要使用一个 Map 就够了。

但是需要注意的是,只有一组参数对应得到的是同一个值时,该模式才有用武之地。

在很多算法中,典型的比如分治法,动态规划(Dynamic Programming)等算法中,这个模式运用的十分广泛。 以动态规划来说,动态规划在求最优解的过程中,会将原有任务分解成若干个子任务,而这些子任务势必还会将自身分解成更小的任务。因此,从整体而言会有相当多的重复的小任务需要被求解。显然,当输入的参数相同时,一个任务只需要被求解一次就好了,求解之后将结果保存起来。待下次需要求解这个任务时,会首先查询这个任务是否已经被解决了,如果答案是肯定的,那么只需要直接返回结果就行了。

就是这么一个简单的优化措施,往往能够将代码的时间复杂度从指数级的变成线性级。

以一个经典的杆切割问题(Rod Cutting Problem)(或者这里也有更加正式的定义:维基百科)为例,来讨论一下如何结合 Lambda 表达式来实现备忘录模式。

首先,简单交代一下这个问题的背景。

一个公司会批发一些杆(Rod),然后对它们进行零售。但是随着杆的长度不同,能够卖出的价格也是不同的。所以该公司为了将利润最大化,需要结合长度价格信息来决定应该将杆切割成什么长度,才能实现利润最大化。

比如,下面的代码:

final List priceValues = Arrays.asList(2, 1, 1, 2, 2, 2, 1, 8, 9, 15);
表达的意思是:长度为 1 的杆能够卖 2 元,长度为 2 的杆能够卖 1 元,以此类推,长度为 10 的杆能够卖 15 元。

当需要被切割的杆长度为 5 时,存在的切割方法多达 16 种(2^(5 - 1))。如下所示:

针对这个问题,在不考虑使用备忘录模式的情况下,可以使用动态规划算法实现如下:

public int maxProfit(final int length) {
int profit = (length <= prices.size()) ? prices.get(length - 1) : 0;
for(int i = 1; i < length; i++) {
int priceWhenCut = maxProfit(i) + maxProfit(length - i);
if(profit < priceWhenCut) profit = priceWhenCut;
}
return profit;
}
而从上面的程序可以发现,有很多重复的子问题。对这些重复的子问题进行不断纠结,损失了很多不必要的性能。分别取杆长为 5 和 22 时,得到的运行时间分别为:0.001 秒和 34.612 秒。可见当杆的长度增加时,性能的下降时非常非常显著的。

因为备忘录模式的原理十分简单,因此实现起来也很简单,只需要在以上 maxProfit 方法的头部加上 Map 的读取操作并判断结果就可以了。但是这样做的话,代码的复用性会不太好。每个需要使用备忘录模式的地方,都需要单独写判断逻辑,那么有没有一种通用的办法呢?答案是肯定的,通过借助 Lambda 表达式的力量可以轻易办到,以下代码我们假设有一个静态方法 callMemoized 用来通过传入一个策略和输入值,来求出最优解:

public int maxProfit(final int rodLenth) {
return callMemoized(
(final Function<Integer, Integer> func, final Integer length) -> {
int profit = (length <= prices.size()) ? prices.get(length - 1) : 0;
for(int i = 1; i < length; i++) {
int priceWhenCut = func.apply(i) + func.apply(length - i);
if(profit < priceWhenCut) profit = priceWhenCut;
}
return profit;
}, rodLenth);
}
让我们仔细分析一下这段代码的意图。首先 callMemoized 方法接受的参数类型是这样的:

public static <T, R> R callMemoized(final BiFunction<Function<T,R>, T, R> function, final T input)
BiFunction 类型的参数 function 实际上封装了一个策略,其中有三个部分:

Function:通过传入参数 T,来得到解答 R。这一点从代码 int priceWhenCut = func.apply(i) + func.apply(length - i)很明显的就能够看出来。可以把它想象成一个备忘录的入口。
T:代表求解问题时需要的参数 T。
R:代表问题的答案 R。
以上的 T 和 R 都是指的类型。

下面我们看看 callMemoized 方法的实现:

public class Memoizer {
public static <T, R> R callMemoized(final BiFunction<Function<T,R>, T, R> function, final T input) {
Function<T, R> memoized = new Function<T, R>() {
private final Map<T, R> store = new HashMap<>();
public R apply(final T input) {
return store.computeIfAbsent(input, key -> function.apply(this, key));
}
};

return memoized.apply(input);
}

}
在该方法中,首先声明了一个匿名 Function 函数接口的实现。其中定义了备忘录模式的核心---Map 结构。 然后在它的 apply 方法中,会借助 Java 8 中为 Map 接口新添加的一个 computeIfAbsent 方法来完成下面的逻辑:

通过传入的 key 检查(在以上代码中是 input)对应的值是否存在于备忘录的底层 Map 中
如果存在,跳转到步骤 4
如果不存在,根据 computeIfAbsent 的第二个参数(是一个 Lambda 表达式)来计算得到 key 对应的 value
返回得到的 value
具体到该方法的源码:

default V computeIfAbsent(K key, Function<? super K, ? extends V> mappingFunction) {
Objects.requireNonNull(mappingFunction);
V v;
if ((v = get(key)) == null) {
V newValue;
if ((newValue = mappingFunction.apply(key)) != null) {
put(key, newValue);
return newValue;
}
}

return v;

}
也可以很清晰地看出以上的几个步骤是如何体现在代码中的。

关键的地方就在于第三步,如果不存在对应的 value,那么需要调用传入的 Lambda 表达式进行求解。以上代码传入的是 key -> function.apply(this, key),这里的 this 使用的十分巧妙,它实际上指向的就是这个用于容纳 Map 结构的匿名 Function 实例。它作为第一个参数传入到算法策略中,同时需要求解的 key 被当做第二个参数传入到算法策略。这里所谓的算法策略,实际上就是在调用 callMemoized 方法时,传入的形式为 BiFunction<Function<T,R>, T, R> 的参数。

因此,所有的子问题仅仅会被求解一次。在得到子问题的答案之后,答案会被放到 Map 数据结构中,以便将来的使用。这就是借助 Lambda 表示实现备忘录模式的方法。

以上的代码可能会显得有些怪异,这很正常。在你反复阅读它们后,并且经过自己的思考能够重写它们时,也就是你对 Lambda 表达式拥有更深理解之时。

使用备忘录模式后,杆长仍然取 5 和 22 时,得到的运行时间分别为:0.050 秒和 0.092 秒。可见当杆的长度增加时,性能并没有如之前那样下降的很厉害。这完全是得益于备忘录模式,此时所有的任务都只会被运行一次。

  • Java

    Java 是一种可以撰写跨平台应用软件的面向对象的程序设计语言,是由 Sun Microsystems 公司于 1995 年 5 月推出的。Java 技术具有卓越的通用性、高效性、平台移植性和安全性。

    3187 引用 • 8213 回帖
  • Lambda
    24 引用 • 19 回帖

相关帖子

欢迎来到这里!

我们正在构建一个小众社区,大家在这里相互信任,以平等 • 自由 • 奔放的价值观进行分享交流。最终,希望大家能够找到与自己志同道合的伙伴,共同成长。

注册 关于
请输入回帖内容 ...
zhaozhizheng
没有人会关心你付出过多少努力,撑得累不累,摔得痛不痛,他们只会看你最后站在什么位置,然后羡慕或者鄙夷 北京

推荐标签 标签

  • Swift

    Swift 是苹果于 2014 年 WWDC(苹果开发者大会)发布的开发语言,可与 Objective-C 共同运行于 Mac OS 和 iOS 平台,用于搭建基于苹果平台的应用程序。

    36 引用 • 37 回帖 • 529 关注
  • 百度

    百度(Nasdaq:BIDU)是全球最大的中文搜索引擎、最大的中文网站。2000 年 1 月由李彦宏创立于北京中关村,致力于向人们提供“简单,可依赖”的信息获取方式。“百度”二字源于中国宋朝词人辛弃疾的《青玉案·元夕》词句“众里寻他千百度”,象征着百度对中文信息检索技术的执著追求。

    63 引用 • 785 回帖 • 177 关注
  • 架构

    我们平时所说的“架构”主要是指软件架构,这是有关软件整体结构与组件的抽象描述,用于指导软件系统各个方面的设计。另外还有“业务架构”、“网络架构”、“硬件架构”等细分领域。

    142 引用 • 442 回帖
  • 链书

    链书(Chainbook)是 B3log 开源社区提供的区块链纸质书交易平台,通过 B3T 实现共享激励与价值链。可将你的闲置书籍上架到链书,我们共同构建这个全新的交易平台,让闲置书籍继续发挥它的价值。

    链书社

    链书目前已经下线,也许以后还有计划重制上线。

    14 引用 • 257 回帖
  • Ubuntu

    Ubuntu(友帮拓、优般图、乌班图)是一个以桌面应用为主的 Linux 操作系统,其名称来自非洲南部祖鲁语或豪萨语的“ubuntu”一词,意思是“人性”、“我的存在是因为大家的存在”,是非洲传统的一种价值观,类似华人社会的“仁爱”思想。Ubuntu 的目标在于为一般用户提供一个最新的、同时又相当稳定的主要由自由软件构建而成的操作系统。

    125 引用 • 169 回帖
  • 导航

    各种网址链接、内容导航。

    40 引用 • 173 回帖
  • BND

    BND(Baidu Netdisk Downloader)是一款图形界面的百度网盘不限速下载器,支持 Windows、Linux 和 Mac,详细介绍请看这里

    107 引用 • 1281 回帖 • 27 关注
  • Sphinx

    Sphinx 是一个基于 SQL 的全文检索引擎,可以结合 MySQL、PostgreSQL 做全文搜索,它可以提供比数据库本身更专业的搜索功能,使得应用程序更容易实现专业化的全文检索。

    1 引用 • 211 关注
  • WiFiDog

    WiFiDog 是一套开源的无线热点认证管理工具,主要功能包括:位置相关的内容递送;用户认证和授权;集中式网络监控。

    1 引用 • 7 回帖 • 589 关注
  • 安装

    你若安好,便是晴天。

    132 引用 • 1184 回帖
  • 阿里云

    阿里云是阿里巴巴集团旗下公司,是全球领先的云计算及人工智能科技公司。提供云服务器、云数据库、云安全等云计算服务,以及大数据、人工智能服务、精准定制基于场景的行业解决方案。

    89 引用 • 345 回帖 • 1 关注
  • Lute

    Lute 是一款结构化的 Markdown 引擎,支持 Go 和 JavaScript。

    25 引用 • 191 回帖 • 16 关注
  • SQLite

    SQLite 是一个进程内的库,实现了自给自足的、无服务器的、零配置的、事务性的 SQL 数据库引擎。SQLite 是全世界使用最为广泛的数据库引擎。

    5 引用 • 7 回帖 • 1 关注
  • TextBundle

    TextBundle 文件格式旨在应用程序之间交换 Markdown 或 Fountain 之类的纯文本文件时,提供更无缝的用户体验。

    1 引用 • 2 回帖 • 49 关注
  • 以太坊

    以太坊(Ethereum)并不是一个机构,而是一款能够在区块链上实现智能合约、开源的底层系统。以太坊是一个平台和一种编程语言 Solidity,使开发人员能够建立和发布下一代去中心化应用。 以太坊可以用来编程、分散、担保和交易任何事物:投票、域名、金融交易所、众筹、公司管理、合同和知识产权等等。

    34 引用 • 367 回帖
  • CSDN

    CSDN (Chinese Software Developer Network) 创立于 1999 年,是中国的 IT 社区和服务平台,为中国的软件开发者和 IT 从业者提供知识传播、职业发展、软件开发等全生命周期服务,满足他们在职业发展中学习及共享知识和信息、建立职业发展社交圈、通过软件开发实现技术商业化等刚性需求。

    14 引用 • 155 回帖
  • Unity

    Unity 是由 Unity Technologies 开发的一个让开发者可以轻松创建诸如 2D、3D 多平台的综合型游戏开发工具,是一个全面整合的专业游戏引擎。

    25 引用 • 7 回帖 • 172 关注
  • Sym

    Sym 是一款用 Java 实现的现代化社区(论坛/BBS/社交网络/博客)系统平台。

    下一代的社区系统,为未来而构建

    524 引用 • 4601 回帖 • 699 关注
  • React

    React 是 Facebook 开源的一个用于构建 UI 的 JavaScript 库。

    192 引用 • 291 回帖 • 385 关注
  • JRebel

    JRebel 是一款 Java 虚拟机插件,它使得 Java 程序员能在不进行重部署的情况下,即时看到代码的改变对一个应用程序带来的影响。

    26 引用 • 78 回帖 • 664 关注
  • LaTeX

    LaTeX(音译“拉泰赫”)是一种基于 ΤΕΧ 的排版系统,由美国计算机学家莱斯利·兰伯特(Leslie Lamport)在 20 世纪 80 年代初期开发,利用这种格式,即使使用者没有排版和程序设计的知识也可以充分发挥由 TeX 所提供的强大功能,能在几天,甚至几小时内生成很多具有书籍质量的印刷品。对于生成复杂表格和数学公式,这一点表现得尤为突出。因此它非常适用于生成高印刷质量的科技和数学类文档。

    12 引用 • 54 回帖 • 62 关注
  • BookxNote

    BookxNote 是一款全新的电子书学习工具,助力您的学习与思考,让您的大脑更高效的记忆。

    笔记整理交给我,一心只读圣贤书。

    1 引用 • 1 回帖
  • 快应用

    快应用 是基于手机硬件平台的新型应用形态;标准是由主流手机厂商组成的快应用联盟联合制定;快应用标准的诞生将在研发接口、能力接入、开发者服务等层面建设标准平台;以平台化的生态模式对个人开发者和企业开发者全品类开放。

    15 引用 • 127 回帖 • 1 关注
  • jQuery

    jQuery 是一套跨浏览器的 JavaScript 库,强化 HTML 与 JavaScript 之间的操作。由 John Resig 在 2006 年 1 月的 BarCamp NYC 上释出第一个版本。全球约有 28% 的网站使用 jQuery,是非常受欢迎的 JavaScript 库。

    63 引用 • 134 回帖 • 724 关注
  • abitmean

    有点意思就行了

    29 关注
  • Ruby

    Ruby 是一种开源的面向对象程序设计的服务器端脚本语言,在 20 世纪 90 年代中期由日本的松本行弘(まつもとゆきひろ/Yukihiro Matsumoto)设计并开发。在 Ruby 社区,松本也被称为马茨(Matz)。

    7 引用 • 31 回帖 • 210 关注
  • OpenShift

    红帽提供的 PaaS 云,支持多种编程语言,为开发人员提供了更为灵活的框架、存储选择。

    14 引用 • 20 回帖 • 633 关注