大数据技术领域正被越来越多的公司关注,而开源一直是大数据技术的灵魂。随着一些细分领域对大数据工具提出更高的期望和要求,一批更高效更有针对性的大数据工具先后诞生,以下将为您介绍几大引人注目的开源大数据工具。
一、Hadoop 相关工具
1. Hadoop
Apache 的 Hadoop 项目已几乎与大数据划上了等号。它不断壮大起来,已成为一个完整的生态系统,众多开源工具面向高度扩展的分布式计算。
支持的操作系统:Windows、Linux 和 OS X。
2. Ambari
作为 Hadoop 生态系统的一部分,这个 Apache 项目提供了基于 Web 的直观界面,可用于配置、管理和监控 Hadoop 集群。有些开发人员想把 Ambari 的功能整合到自己的应用程序当中,Ambari 也为他们提供了充分利用 REST(代表性状态传输协议)的 API。
支持的操作系统:Windows、Linux 和 OS X。
3. Avro
这个 Apache 项目提供了数据序列化系统,拥有丰富的数据结构和紧凑格式。模式用 JSON 来定义,它很容易与动态语言整合起来。
支持的操作系统:与操作系统无关。
4. Cascading
Cascading 是一款基于 Hadoop 的应用程序开发平台。提供商业支持和培训服务。
支持的操作系统:与操作系统无关。
相关链接:http://www.cascading.org/projects/cascading/
5. Chukwa
Chukwa 基于 Hadoop,可以收集来自大型分布式系统的数据,用于监控。它还含有用于分析和显示数据的工具。
支持的操作系统:Linux 和 OS X。
6. Flume
Flume 可以从其他应用程序收集日志数据,然后将这些数据送入到 Hadoop。官方网站声称:“它功能强大、具有容错性,还拥有可以调整优化的可靠性机制和许多故障切换及恢复机制。”
支持的操作系统:Linux 和 OS X。
相关链接:https://cwiki.apache.org/confluence/display/FLUME/Home
7. HBase
HBase 是为有数十亿行和数百万列的超大表设计的,这是一种分布式数据库,可以对大数据进行随机性的实时读取/写入访问。它有点类似谷歌的 Bigtable,不过基于 Hadoop 和 Hadoop 分布式文件系统(HDFS)而建。
支持的操作系统:与操作系统无关。
8. Hadoop 分布式文件系统(HDFS)
HDFS 是面向 Hadoop 的文件系统,不过它也可以用作一种独立的分布式文件系统。它基于 Java,具有容错性、高度扩展性和高度配置性。
支持的操作系统:Windows、Linux 和 OS X。
相关链接:https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/HdfsUserGuide.html
9. Hive
Apache Hive 是面向 Hadoop 生态系统的数据仓库。它让用户可以使用 HiveQL 查询和管理大数据,这是一种类似 SQL 的语言。
支持的操作系统:与操作系统无关。
10. Hivemall
Hivemall 结合了面向 Hive 的多种机器学习算法。它包括诸多高度扩展性算法,可用于数据分类、递归、推荐、k 最近邻、异常检测和特征哈希。
支持的操作系统:与操作系统无关。
相关链接:https://github.com/myui/hivemall
11. Mahout
据官方网站声称,Mahout 项目的目的是“为迅速构建可扩展、高性能的机器学习应用程序打造一个环境。”它包括用于在 Hadoop MapReduce 上进行数据挖掘的众多算法,还包括一些面向 Scala 和 Spark 环境的新颖算法。
支持的操作系统:与操作系统无关。
12. MapReduce
作为 Hadoop 一个不可或缺的部分,MapReduce 这种编程模型为处理大型分布式数据集提供了一种方法。它最初是由谷歌开发的,但现在也被本文介绍的另外几个大数据工具所使用,包括 CouchDB、MongoDB 和 Riak。
支持的操作系统:与操作系统无关。
13. Oozie
这种工作流程调度工具是为了管理 Hadoop 任务而专门设计的。它能够按照时间或按照数据可用情况触发任务,并与 MapReduce、Pig、Hive、Sqoop 及其他许多相关工具整合起来。
支持的操作系统:Linux 和 OS X。
14. Pig
Apache Pig 是一种面向分布式大数据分析的平台。它依赖一种名为 Pig Latin 的编程语言,拥有简化的并行编程、优化和可扩展性等优点。
支持的操作系统:与操作系统无关。
15. Sqoop
企业经常需要在关系数据库与 Hadoop 之间传输数据,而 Sqoop 就是能完成这项任务的一款工具。它可以将数据导入到 Hive 或 HBase,并从 Hadoop 导出到关系数据库管理系统(RDBMS)。
支持的操作系统:与操作系统无关。
16. Spark
作为 MapReduce 之外的一种选择,Spark 是一种数据处理引擎。它声称,用在内存中时,其速度比 MapReduce 最多快 100 倍;用在磁盘上时,其速度比 MapReduce 最多快 10 倍。它可以与 Hadoop 和 Apache Mesos 一起使用,也可以独立使用。
支持的操作系统:Windows、Linux 和 OS X。
17. Tez
Tez 建立在 Apache Hadoop YARN 的基础上,这是“一种应用程序框架,允许为任务构建一种复杂的有向无环图,以便处理数据。”它让 Hive 和 Pig 可以简化复杂的任务,而这些任务原本需要多个步骤才能完成。
支持的操作系统:Windows、Linux 和 OS X。
18. Zookeeper
这种大数据管理工具自称是“一项集中式服务,可用于维护配置信息、命名、提供分布式同步以及提供群组服务。”它让 Hadoop 集群里面的节点可以彼此协调。
支持的操作系统:Linux、Windows(只适合开发环境)和 OS X(只适合开发环境)。
相关链接:http://zookeeper.apache.org
二、大数据分析平台和工具
19. Disco
Disco 最初由诺基亚开发,这是一种分布式计算框架,与 Hadoop 一样,它也基于 MapReduce。它包括一种分布式文件系统以及支持数十亿个键和值的数据库。
支持的操作系统:Linux 和 OS X。
20. HPCC
作为 Hadoop 之外的一种选择,HPCC 这种大数据平台承诺速度非常快,扩展性超强。除了免费社区版外,HPCC Systems 还提供收费的企业版、收费模块、培训、咨询及其他服务。
支持的操作系统:Linux。
21. Lumify
Lumify 归 Altamira 科技公司(以国家安全技术而闻名)所有,这是一种开源大数据整合、分析和可视化平台。你只要在 Try.Lumify.io 试一下演示版,就能看看它的实际效果。
支持的操作系统:Linux。
相关链接:http://www.jboss.org/infinispan.html
22. Pandas
Pandas 项目包括基于 Python 编程语言的数据结构和数据分析工具。它让企业组织可以将 Python 用作 R 之外的一种选择,用于大数据分析项目。
支持的操作系统:Windows、Linux 和 OS X。
23. Storm
Storm 现在是一个 Apache 项目,它提供了实时处理大数据的功能(不像 Hadoop 只提供批任务处理)。其用户包括推特、美国天气频道、WebMD、阿里巴巴、Yelp、雅虎日本、Spotify、Group、Flipboard 及其他许多公司。
支持的操作系统:Linux。
三、数据库/数据仓库
24. Blazegraph
Blazegraph 之前名为“Bigdata”,这是一种高度扩展、高性能的数据库。它既有使用开源许可证的版本,也有使用商业许可证的版本。
支持的操作系统:与操作系统无关。
相关链接:http://www.systap.com/bigdata
25. Cassandra
这种 NoSQL 数据库最初由 Facebook 开发,现已被 1500 多家企业组织使用,包括苹果、欧洲原子核研究组织(CERN)、康卡斯特、电子港湾、GitHub、GoDaddy、Hulu、Instagram、Intuit、Netfilx、Reddit 及其他机构。它能支持超大规模集群;比如说,苹果部署的 Cassandra 系统就包括 75000 多个节点,拥有的数据量超过 10 PB。
支持的操作系统:与操作系统无关。
相关链接:http://cassandra.apache.org
26. CouchDB
CouchDB 号称是“一款完全拥抱互联网的数据库”,它将数据存储在 JSON 文档中,这种文档可以通过 Web 浏览器来查询,并且用 JavaScript 来处理。它易于使用,在分布式上网络上具有高可用性和高扩展性。
支持的操作系统:Windows、Linux、OS X 和安卓。
相关链接:http://couchdb.apache.org
27. FlockDB
由推特开发的 FlockDB 是一种非常快、扩展性非常好的图形数据库,擅长存储社交网络数据。虽然它仍可用于下载,但是这个项目的开源版已有一段时间没有更新了。
支持的操作系统:与操作系统无关。
相关链接:https://github.com/twitter/flockdb
28. Hibari
这个基于 Erlang 的项目自称是“一种分布式有序键值存储系统,保证拥有很强的一致性”。它最初是由 Gemini Mobile Technologies 开发的,现在已被欧洲和亚洲的几家电信运营商所使用。
支持的操作系统:与操作系统无关。
相关链接:http://hibari.github.io/hibari-doc/
29. Hypertable
Hypertable 是一种与 Hadoop 兼容的大数据数据库,承诺性能超高,其用户包括电子港湾、百度、高朋、Yelp 及另外许多互联网公司。提供商业支持服务。
支持的操作系统:Linux 和 OS X。
30. Impala
Cloudera 声称,基于 SQL 的 Impala 数据库是“面向 Apache Hadoop 的领先的开源分析数据库”。它可以作为一款独立产品来下载,又是 Cloudera 的商业大数据产品的一部分。
支持的操作系统:Linux 和 OS X。
相关链接:http://www.cloudera.com/content/cloudera/en/products-and-services/cdh/impala.html
31. InfoBright 社区版
InfoBright 为数据分析而设计,这是一种面向列的数据库,具有很高的压缩比。InfoBright.com 提供基于同一代码的收费产品,提供支持服务。
支持的操作系统:Windows 和 Linux。
相关链接:http://www.infobright.org
32. MongoDB
mongoDB 的下载量已超过 1000 万人次,这是一种极其受欢迎的 NoSQL 数据库。MongoDB.com 上提供了企业版、支持、培训及相关产品和服务。
支持的操作系统:Windows、Linux、OS X 和 Solaris。
33. Neo4j
Neo4j 自称是“速度最快、扩展性最佳的原生图形数据库”,它承诺具有大规模扩展性、快速的密码查询性能和经过改进的开发效率。用户包括电子港湾、必能宝(Pitney Bowes)、沃尔玛、德国汉莎航空公司和 CrunchBase。
支持的操作系统:Windows 和 Linux。
相关链接:http://neo4j.org
34. OrientDB
这款多模型数据库结合了图形数据库的一些功能和文档数据库的一些功能。提供收费支持、培训和咨询等服务。
支持的操作系统:与操作系统无关。
相关链接:http://www.orientdb.org/index.htm
35. Pivotal Greenplum Database
Pivotal 声称,Greenplum 是“同类中最佳的企业级分析数据库”,能够非常快速地对庞大的海量数据进行功能强大的分析。它是 Pivotal 大数据库套件的一部分。
支持的操作系统:Windows、Linux 和 OS X。
相关链接:http://pivotal.io/big-data/pivotal-greenplum-database
36. Riak
Riak“功能完备”,有两个版本:KV 是分布式 NoSQL 数据库,S2 提供了面向云环境的对象存储。它既有开源版,也有商业版,还有支持 Spark、Redis 和 Solr 的附件。
支持的操作系统:Linux 和 OS X。
相关链接:http://basho.com/riak-0-10-is-full-of-great-stuff/
37. Redis
Redis 现在由 Pivotal 赞助,这是一种键值缓存和存储系统。提供收费支持。要注意:虽然该项目并不正式支持 Windows,不过微软在 GitHub 上有一个 Windows 派生版。
支持的操作系统:Linux。
相关链接:http://redis.io
四、商业智能
38. Talend Open Studio
Talend 的下载量已超过 200 万人次,其开源软件提供了数据整合功能。该公司还开发收费的大数据、云、数据整合、应用程序整合和主数据管理等工具。其用户包括美国国际集团(AIG)、康卡斯特、电子港湾、通用电气、三星、Ticketmaster 和韦里逊等企业组织。
支持的操作系统:Windows、Linux 和 OS X。
相关链接:http://www.talend.com/index.php
39. Jaspersoft
Jaspersoft 提供了灵活、可嵌入的商业智能工具,用户包括众多企业组织:高朋、冠群科技、美国农业部、爱立信、时代华纳有线电视、奥林匹克钢铁、内斯拉斯加大学和通用动力公司。除了开源社区版外,它还提供收费的报表版、亚马逊网络服务(AWS)版、专业版和企业版。
支持的操作系统:与操作系统无关。
相关链接:http://www.jaspersoft.com
40. Pentaho
Pentaho 归日立数据系统公司所有,它提供了一系列数据整合和业务分析工具。官方网站上提供了三个社区版;访问 Pentaho.com,即可了解收费支持版方面的信息。
支持的操作系统:Windows、Linux 和 OS X。
相关链接:http://community.pentaho.com
41. SpagoBI
Spago 被市场分析师们称为“开源领袖”,它提供商业智能、中间件和质量保证软件,另外还提供 Java EE 应用程序开发框架。该软件百分之分免费、开源,不过也提供收费的支持、咨询、培训及其他服务。
支持的操作系统:与操作系统无关。
相关链接:http://www.spagoworld.org/xwiki/bin/view/SpagoWorld/
42. KNIME
KNIME 的全称是“康斯坦茨信息挖掘工具”(Konstanz Information Miner),这是一种开源分析和报表平台。提供了几个商业和开源扩展件,以增强其功能。
支持的操作系统:Windows、Linux 和 OS X。
相关链接:http://www.knime.org
43. BIRT
BIRT 的全称是“商业智能和报表工具”。它提供的一种平台可用于制作可以嵌入到应用程序和网站中的可视化元素及报表。它是 Eclipse 社区的一部分,得到了 Actuate、IBM 和 Innovent Solutions 的支持。
支持的操作系统:与操作系统无关。
相关链接:http://www.eclipse.org/birt/
五、数据挖掘
44.DataMelt
作为 jHepWork 的后续者,DataMelt 可以处理数学运算、数据挖掘、统计分析和数据可视化等任务。它支持 Java 及相关的编程语言,包括 Jython、Groovy、JRuby 和 Beanshell。
支持的操作系统:与操作系统无关。
45. KEEL
KEEL 的全称是“基于进化学习的知识提取”,这是一种基于 Java 的机器学习工具,为一系列大数据任务提供了算法。它还有助于评估算法在处理递归、分类、集群、模式挖掘及类似任务时的效果。
支持的操作系统:与操作系统无关。
相关链接:http://keel.es
46. Orange
Orange 认为数据挖掘应该是“硕果累累、妙趣横生”,无论你是有多年的丰富经验,还是刚开始接触这个领域。它提供了可视化编程和 Python 脚本工具,可用于数据可视化和分析。
支持的操作系统:Windows、Linux 和 OS X。
47. RapidMiner
RapidMiner 声称拥有 250000 多个用户,包括贝宝、德勤、电子港湾、思科和大众。它提供一系列广泛的开源版和收费版,不过要注意:免费的开源版只支持 CSV 格式或 Excel 格式的数据。
支持的操作系统:与操作系统无关。
48. Rattle
Rattle 的全称是“易学易用的 R 分析工具”。它为 R 编程语言提供了一种图形化界面,简化了这些过程:构建数据的统计或可视化摘要、构建模型以及执行数据转换。
支持的操作系统:Windows、Linux 和 OS X。
相关链接:http://rattle.togaware.com
49. SPMF
SPMF 现在包括 93 种算法,可用于顺序模式挖掘、关联规则挖掘、项集挖掘、顺序规则挖掘和集群。它可以独立使用,也可以整合到其他基于 Java 的程序中。
支持的操作系统:与操作系统无关。
相关链接:http://www.philippe-fournier-viger.com/spmf/
50. Weka
怀卡托知识分析环境(Weka)是一组基于 Java 的机器学习算法,面向数据挖掘。它可以执行数据预处理、分类、递归、集群、关联规则和可视化。
支持的操作系统:Windows、Linux 和 OS X。
相关链接:http://www.cs.waikato.ac.nz/~ml/weka/
六、查询引擎
51. Drill
这个 Apache 项目让用户可以使用基于 SQL 的查询,查询 Hadoop、NoSQL 数据库和云存储服务。它可用于数据挖掘和即席查询,它支持一系列广泛的数据库,包括 HBase、MongoDB、MapR-DB、HDFS、MapR-FS、亚马逊 S3、Azure Blob Storage、谷歌云存储和 Swift。
支持的操作系统:Windows、Linux 和 OS X。
七、编程语言
52. R
R 类似 S 语言和环境,旨在处理统计计算和图形。它包括一套整合的大数据工具,可用于数据处理、计算和可视化。
支持的操作系统:Windows、Linux 和 OS X。
53. ECL
企业控制语言(ECL)是开发人员用来在 HPCC 平台上构建大数据应用程序的语言。HPCC Systems 官方网站上有集成开发环境(IDE)、教程以及处理该语言的众多相关工具。
支持的操作系统:Linux。
相关链接:http://hpccsystems.com/download/docs/ecl-language-reference
八、大数据搜索
54. Lucene
基于 Java 的 Lucene 可以非常迅速地执行全文搜索。据官方网站声称,它在现代硬件上每小时能够检索超过 150GB 的数据,它含有强大而高效的搜索算法。开发工作得到了 Apache 软件基金会的赞助。
支持的操作系统:与操作系统无关。
相关链接:http://lucene.apache.org/core/
55. Solr
Solr 基于 Apache Lucene,是一种高度可靠、高度扩展的企业搜索平台。知名用户包括 eHarmony、西尔斯、StubHub、Zappos、百思买、AT&T、Instagram、Netflix、彭博社和 Travelocity。
支持的操作系统:与操作系统无关。
相关链接:http://lucene.apache.org/solr/
九、内存中技术
56. Ignite
这个 Apache 项目自称是“一种高性能、整合式、分布式的内存中平台,可用于对大规模数据集执行实时计算和处理,速度比传统的基于磁盘的技术或闪存技术高出好几个数量级。”该平台包括数据网格、计算网格、服务网格、流媒体、Hadoop 加速、高级集群、文件系统、消息传递、事件和数据结构等功能。
支持的操作系统:与操作系统无关。
相关链接:https://ignite.incubator.apache.org
57. Terracotta
Terracotta 声称其 BigMemory 技术是“世界上数一数二的内存中数据管理平台”,声称拥有 210 万开发人员,250 家企业组织部署了其软件。该公司还提供商业版软件,另外提供支持、咨询和培训等服务。
支持的操作系统:与操作系统无关。
相关链接:http://www.terracotta.org
58. Pivotal GemFire/Geode
今年早些时候,Pivotal 宣布它将开放其大数据套件关键组件的源代码,其中包括 GemFire 内存中 NoSQL 数据库。它已向 Apache 软件基金会递交了一项提案,以便在“Geode”的名下管理 GemFire 数据库的核心引擎。还提供该软件的商业版。
支持的操作系统:Windows 和 Linux。
相关链接:http://pivotal.io/big-data/pivotal-gemfire
59. GridGain
由 Apache Ignite 驱动的 GridGrain 提供内存中数据结构,用于迅速处理大数据,还提供基于同一技术的 Hadoop 加速器。它既有收费的企业版,也有免费的社区版,后者包括免费的基本支持。
支持的操作系统:Windows、Linux 和 OS X。
60. Infinispan
作为一个红帽 JBoss 项目,基于 Java 的 Infinispan 是一种分布式内存中数据网格。它可以用作缓存、用作高性能 NoSQL 数据库,或者为诸多框架添加集群功能。
支持的操作系统:与操作系统无关。
欢迎来到这里!
我们正在构建一个小众社区,大家在这里相互信任,以平等 • 自由 • 奔放的价值观进行分享交流。最终,希望大家能够找到与自己志同道合的伙伴,共同成长。
注册 关于