量化投资的哲学之学习笔记

本贴最后更新于 2417 天前,其中的信息可能已经事过景迁

知乎牛人总结的精华,记录在此。

  • 量化投资的哲学基础 0:不懂哲学的程序员不是好投资经理
  • https://zhuanlan.zhihu.com/p/37333831
  • 投资有三个境界:交易,策略和投资哲学。
    • 交易就是在什么时间买卖哪只股票。
      • 好交易能够帮你赚钱。
    • 策略就是一套交易的逻辑和规则。简单讲,就是怎么在几千只股票中选到茅台和乐视。
      • 好策略指导你做赚钱的交易。
      • 采用价值投资策略的老师,关心市盈率市净率,关心公司盈利有没有护城河;
      • 采用技术分析策略的老师,关心技术指标发出了什么信号,关心技术形态是否好看;
      • 采用机器学习策略的老师,关心算法是否高逼格,特征是否好又多。
    • 投资哲学就是在回答什么是好策略。有了自己的投资哲学,才知道自己应该采用什么策略。
      • 正确的投资哲学帮你找到好策略。
  • 知识可分为两类:
    • 逻辑体系型的
      • 需要思考,把各种概念连起来,或归纳,或演绎,最后,在大脑中形成一种逻辑网状结构。比如可计算理论,分布式系统,解释器等。
      • 基本概念和之间的联系
      • 多因子
    • 使用操作型的
      • 基本不需要思考,只需要看一下目录,要用的时候参考一下手册即可。比如 linux 的各种命令,go,python 的一些奇怪语法,elastic-search dsl 的使用。
      • 比如各种常用策略和使用场景,需要先记录下来
  • 量化投资的哲学基础 1:量化投资不是“量化”投资
  • https://zhuanlan.zhihu.com/p/29375085
  • 量化投资不是“量化”投资
  • 量化投资,字面上解释,就是用数量化的方法进行投资。关键词在“量化”。
  • 在外人看来,量化投资就是一群具有数理教育背景的人,用电脑程序分析大量的数据,建立数学模型,并根据数据进行投资。量化投资人还特别喜欢在展示业绩的时候,用到大量的风险收益指标:Sharpe Ratio 和 Max Draw Down Duration 等等。
  • 然而,我只需要以的三个投资策略为例,就能证明量化投资的本质并非“量化”:
  • 例 1:数量化的量化策略:买入过去一个月涨跌幅最小的 20 只股票并持有一个月。
  • 例 2:非数量化的量化策略:当公司发出回购公司股票的公告时,买入并持有这只股票 2 天。
  • 例 3:数量化的非量化策略:判断螺纹钢期货走出第 3 浪时,买入螺纹钢期货。
  • 通过上面三个例子,我们能够发现,量化策略似乎不必然用到数量,比如例 2。而一些用到数量的策略通常不被认为是量化投资,比如例 3。
  • 量化投资的模型做出的解释和预测是可以检验的。
  • 科学哲学是关于科学的基础,方法和含义哲学分支。这门学问的核心问题包括科学的标准,科学理论的可靠性和科学的终极目的。
  • 量化投资同样依赖这些哲学原则:
    • 本体论:世界不依赖心智。量化投资不影响市场。历史测试就是假设你在历史上交易并统计交易结果。如果量化投资会影响市场,那么历史测试就是不准确的。这也就是量化投资容易受到资金规模限制的原因。因为资金规模一大,就不可避免的影响市场,导致历史测试和实际交易存在差异。
    • 本体论:不存在超自然的世界。当然不是神在操纵市场。
    • 本体论:世界按照规律运行。市场按照规律运行。如果假设市场的运行都是巧合。那么经过历史测试的模型将不能外推到未来。
    • 本体论:原因优先于结果。显而易见,量化投资模型假设模型的条件先发生,市场的波动后发生。否则,市场运行优先于条件,那么再依据条件去交易就迟了。
    • 本体论:无不能生有。市场的运行都是有原因的。不会凭空出现某个市场现象或者影响市场的因素。这个市场现象和影响因素也不会凭空消失。否则,历史测试又不能外推到未来了。
    • 本体论:精神不能直接作用于物质。量化投资者的想法不会直接影响市场。这个是显而易见的。
    • 认识论:可观察之物可知。可以通过观察市场获得知识。
    • 认识论:不可观察之物可知。通过历史测试的模型可以,不是必然可以,外推到未来。
    • 方法论:奥卡姆剃刀。量化模型追求简洁。如无必要,勿增实体。
    • 方法论:可错论。量化模型是可以是错误的。因此量化模型才是可以比较,修正和否定的。
  • 量化投资的哲学基础 2:笛卡尔说,股票多因子模型是个好框架
  • https://zhuanlan.zhihu.com/p/30132661
  • 提出问题
  • 首先定义交易的对象。如果对象是螺纹钢,通常这是一个 CTA 策略。如果对象是黄金和白银期货的价差,那么这是一个套利策略。如果是对象是股票和股指期货的价差,那么这是一个 Alpha 策略。如果是上证 50ETF 的波动率,那么这个一个期权策略。
  • 其次定义交易的时间。典型的高频策略的持仓时间很短,甚至短于一秒。典型的日内 CTA 策略和股票 T+0 策略的持仓时间在几分钟到几个小时。典型的股票 Alpha 策略的持仓时间为几周到一个月。
  • 怎样去构建模型?怎样去寻找模型输入?怎样去构建模型输入?应该采取什么样的研究顺序?应该注意哪些事项?这些问题才是难点。
  • 提出解决框架
  • 笛卡尔和《谈谈方法论》
  • 获得知识的方法四条箴言广为流传:
    • 绝不接受任何我没有确认为真的事物。
    • 把每一个难题拆分为尽量多的部分,直到可能充分解决难题为止。
    • 执行思考时,从最简单和最容易了解的对象开始,然后一点点上升到更复杂的知识,即便不是按照对象的时间先后顺序。
    • 列举要完整,检验要普遍,直到我确信没有遗漏。
  • 股票多因子模型-其实目前的评级模型也是多因子模型
  • 量化投资的哲学基础 3:休谟说,量化投资模型都是过度优化
  • https://zhuanlan.zhihu.com/p/30543252
  • 知识从哪里来?最传统的方法就是演绎(Deduction)和归纳(Induction)
  • 演绎推理,从陈述(前提)到逻辑上确定的结论的推理过程。
  • 套利策略是最典型的通过演绎得到的量化策略:关于衍生品的期现套利和跨期套利、从 Put Call Parity 推导出来的看涨期权和看跌期权套利、ETF 套利和分级基金套利等等。
  • 这类策略的特点有几点:1. 策略都是教科书式的,因为众所周知。2. 策略的收益在建仓时就已经锁定了,也就是演绎推理的“确定”的结论。3. 因此,这类策略的获利能力取决于市场犯了多少的错误。随着市场更加理性,套利策略逐渐演变成 IT 的军备竞赛,策略收益很难持续。
  • 归纳是从特例到总体的不受限制的概括推理。归纳推理中,前提并不保证结论。
  • 在量化投资领域,绝大多数的模型都是通过归纳得出的。
  • 技术分析相关的因子完全依赖于归纳,而基本面分析中归纳也是最关键步骤。
  • FF 模型发现小市值股票的预期收益率高于大市值的股票,低估值的股票的预期收益率高于高估值的股票,这两个因素无法用市场因子来解释。因此股票价格受到市场,市值和估值三个因素的影响。FF 模型没有为后续因子的发现给出任何限定。FF 模型纯粹是“归纳”出的模型。
  • 对演绎的依赖最小和对归纳依赖最大的 FF 模型无论在学术界还是业界都获得了成功,成为量化投资和股票多因子模型最重要的源头。
  • 归纳方法存在一个致命问题:过度优化
  • 休谟问题。哪怕数据足够充分,哪怕模型很好地适应了全部数据,归纳出的知识是无法保证可以外推的。
  • 量化投资的哲学基础 4:科学哲学家告诉你怎样避免过度优化
  • https://zhuanlan.zhihu.com/p/30940020
  • 在量化投资领域中,任何人都想追求高收益,低风险和大资金容量的策略。但是任何一个策略只可能满足其中两条:高频策略通常资金容量小;Alpha 策略通常收益率低;CTA 策略通常风险大。在给定的资金容量下,一个“聪明”的策略可能可以在一个“愚蠢”的市场中获得较高的风险收益比。但是,总会有力量能够把一个策略的风险收益比拉回平均水平。交易的“圣杯”是不存在的。
  • 孔德的思想启示我们,放弃追求过高的风险收益比,就能够帮助我们避免过度优化。
  • 波普尔的思想启示我们,多多开发策略,淘汰掉不赚钱的,使用还能赚钱的,然后继续多多开发策略。
  • 那么 Abduction 直接引出了下一个问题,既然多个猜想都能解释现象,那么什么样的解释是最有可能的?或者说,什么样的理论最有可能是正确的?
  • 一个好理论通常满足以下四个条件:
    • 有内在机制支撑的理论是更好理论。
    • 在很多领域都有效的理论是更好的理论。
    • 能够定量解释的理论比定性解释的理论更好。技术指标是典型的定性分析理论。通常给出多空两个状态,或者多、空和空仓三个状态。而多因子 alpha 模型是典型的定量分析理论,能够计算出来每只股票的 alpha 值。尽管很难有因子 20 个 buckets 的状态下仍然保持线性关系,但是仍然比技术指标的 3 个状态进步很多了。
    • 一个简单的理论比复杂的理论更好。以多元线性回归为基础的多因子模型其实就是一个非常简单的模型。举几个例子,首先,线性回归模型假设自变量和因变量之间是线性关系。线性关系是拟合问题中最简单的模型的,稍微复杂一点的模型有抛物线和三角函数等。其次,一个传统的多因子模型会通过多种办法将成百上千的因子缩减到几个因子,即假设几个因子可以解释因变量。最后,线性回归模型假设因子之间没有相关性。否则,一旦要考虑因子间的相关性,模型的复杂度就会朝着几何倍数发展。
  • 量化投资的哲学基础 5:根据 Abduction 理论挑选机器学习模型
  • https://zhuanlan.zhihu.com/p/37867708
  • 本文会比较以下三个最最简单的算法:KNN,ID3,OLS。
  • 选用以上三个算法,主要是因为简单的算法更方便读者看清楚本质。
  • KNN, K Nearest Neighbors, K 近邻法是最简单的机器学习算法。
  • 决策树是和 KNN 并列的最简单的机器学习算法。ID3 又是决策树中最简单的一种。
  • OLS,最小二乘法,是被研究地最透彻的统计方法。OLS 是最传统的统计方法,通常被视作机器学习算法的对立面。
  • 我推荐一个相对完美的算法——GBDT(Gradient Boosting Decision Tree)。
  • 一个极简的 GBDT 的算法的思路如下:首先选出对标签最有解释力的特征,做回归,然后求得残差。然而选出对残差最有解释力的特征,做回归,然后求得残差。然后继续迭代。具体算法,读者可以自行百度。

相关帖子

欢迎来到这里!

我们正在构建一个小众社区,大家在这里相互信任,以平等 • 自由 • 奔放的价值观进行分享交流。最终,希望大家能够找到与自己志同道合的伙伴,共同成长。

注册 关于
请输入回帖内容 ...

推荐标签 标签

  • CongSec

    本标签主要用于分享网络空间安全专业的学习笔记

    1 引用 • 1 回帖 • 31 关注
  • 阿里巴巴

    阿里巴巴网络技术有限公司(简称:阿里巴巴集团)是以曾担任英语教师的马云为首的 18 人,于 1999 年在中国杭州创立,他们相信互联网能够创造公平的竞争环境,让小企业通过创新与科技扩展业务,并在参与国内或全球市场竞争时处于更有利的位置。

    43 引用 • 221 回帖 • 61 关注
  • Sublime

    Sublime Text 是一款可以用来写代码、写文章的文本编辑器。支持代码高亮、自动完成,还支持通过插件进行扩展。

    10 引用 • 5 回帖 • 3 关注
  • Python

    Python 是一种面向对象、直译式电脑编程语言,具有近二十年的发展历史,成熟且稳定。它包含了一组完善而且容易理解的标准库,能够轻松完成很多常见的任务。它的语法简捷和清晰,尽量使用无异义的英语单词,与其它大多数程序设计语言使用大括号不一样,它使用缩进来定义语句块。

    557 引用 • 675 回帖
  • gRpc
    11 引用 • 9 回帖 • 91 关注
  • 生活

    生活是指人类生存过程中的各项活动的总和,范畴较广,一般指为幸福的意义而存在。生活实际上是对人生的一种诠释。生活包括人类在社会中与自己息息相关的日常活动和心理影射。

    230 引用 • 1454 回帖
  • 思源笔记

    思源笔记是一款隐私优先的个人知识管理系统,支持完全离线使用,同时也支持端到端加密同步。

    融合块、大纲和双向链接,重构你的思维。

    25481 引用 • 105378 回帖
  • IDEA

    IDEA 全称 IntelliJ IDEA,是一款 Java 语言开发的集成环境,在业界被公认为最好的 Java 开发工具之一。IDEA 是 JetBrains 公司的产品,这家公司总部位于捷克共和国的首都布拉格,开发人员以严谨著称的东欧程序员为主。

    181 引用 • 400 回帖
  • RESTful

    一种软件架构设计风格而不是标准,提供了一组设计原则和约束条件,主要用于客户端和服务器交互类的软件。基于这个风格设计的软件可以更简洁,更有层次,更易于实现缓存等机制。

    30 引用 • 114 回帖 • 7 关注
  • GitBook

    GitBook 使您的团队可以轻松编写和维护高质量的文档。 分享知识,提高团队的工作效率,让用户满意。

    3 引用 • 8 回帖
  • Latke

    Latke 是一款以 JSON 为主的 Java Web 框架。

    71 引用 • 535 回帖 • 832 关注
  • OkHttp

    OkHttp 是一款 HTTP & HTTP/2 客户端库,专为 Android 和 Java 应用打造。

    16 引用 • 6 回帖 • 84 关注
  • 强迫症

    强迫症(OCD)属于焦虑障碍的一种类型,是一组以强迫思维和强迫行为为主要临床表现的神经精神疾病,其特点为有意识的强迫和反强迫并存,一些毫无意义、甚至违背自己意愿的想法或冲动反反复复侵入患者的日常生活。

    15 引用 • 161 回帖 • 1 关注
  • 导航

    各种网址链接、内容导航。

    44 引用 • 177 回帖
  • Unity

    Unity 是由 Unity Technologies 开发的一个让开发者可以轻松创建诸如 2D、3D 多平台的综合型游戏开发工具,是一个全面整合的专业游戏引擎。

    25 引用 • 7 回帖 • 123 关注
  • OpenResty

    OpenResty 是一个基于 NGINX 与 Lua 的高性能 Web 平台,其内部集成了大量精良的 Lua 库、第三方模块以及大多数的依赖项。用于方便地搭建能够处理超高并发、扩展性极高的动态 Web 应用、Web 服务和动态网关。

    17 引用 • 53 关注
  • CentOS

    CentOS(Community Enterprise Operating System)是 Linux 发行版之一,它是来自于 Red Hat Enterprise Linux 依照开放源代码规定释出的源代码所编译而成。由于出自同样的源代码,因此有些要求高度稳定的服务器以 CentOS 替代商业版的 Red Hat Enterprise Linux 使用。两者的不同在于 CentOS 并不包含封闭源代码软件。

    239 引用 • 224 回帖
  • 星云链

    星云链是一个开源公链,业内简单的将其称为区块链上的谷歌。其实它不仅仅是区块链搜索引擎,一个公链的所有功能,它基本都有,比如你可以用它来开发部署你的去中心化的 APP,你可以在上面编写智能合约,发送交易等等。3 分钟快速接入星云链 (NAS) 测试网

    3 引用 • 16 回帖
  • 运维

    互联网运维工作,以服务为中心,以稳定、安全、高效为三个基本点,确保公司的互联网业务能够 7×24 小时为用户提供高质量的服务。

    150 引用 • 257 回帖
  • Git

    Git 是 Linux Torvalds 为了帮助管理 Linux 内核开发而开发的一个开放源码的版本控制软件。

    211 引用 • 358 回帖
  • Postman

    Postman 是一款简单好用的 HTTP API 调试工具。

    4 引用 • 3 回帖
  • SSL

    SSL(Secure Sockets Layer 安全套接层),及其继任者传输层安全(Transport Layer Security,TLS)是为网络通信提供安全及数据完整性的一种安全协议。TLS 与 SSL 在传输层对网络连接进行加密。

    70 引用 • 193 回帖 • 413 关注
  • 爬虫

    网络爬虫(Spider、Crawler),是一种按照一定的规则,自动地抓取万维网信息的程序。

    106 引用 • 275 回帖
  • Tomcat

    Tomcat 最早是由 Sun Microsystems 开发的一个 Servlet 容器,在 1999 年被捐献给 ASF(Apache Software Foundation),隶属于 Jakarta 项目,现在已经独立为一个顶级项目。Tomcat 主要实现了 JavaEE 中的 Servlet、JSP 规范,同时也提供 HTTP 服务,是市场上非常流行的 Java Web 容器。

    162 引用 • 529 回帖 • 2 关注
  • Vue.js

    Vue.js(读音 /vju ː/,类似于 view)是一个构建数据驱动的 Web 界面库。Vue.js 的目标是通过尽可能简单的 API 实现响应的数据绑定和组合的视图组件。

    268 引用 • 666 回帖 • 1 关注
  • CSDN

    CSDN (Chinese Software Developer Network) 创立于 1999 年,是中国的 IT 社区和服务平台,为中国的软件开发者和 IT 从业者提供知识传播、职业发展、软件开发等全生命周期服务,满足他们在职业发展中学习及共享知识和信息、建立职业发展社交圈、通过软件开发实现技术商业化等刚性需求。

    14 引用 • 155 回帖 • 1 关注
  • 机器学习

    机器学习(Machine Learning)是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。

    83 引用 • 37 回帖